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vi PREFACE

advance. In fact, many excellent designers as well as fore-
men and superintendents are shop graduates who studied
mathematics. This book, therefore, is intended not only to
assist in the solution of the problems liable to arise in everyday
shop practice, but to lay the foundation for a higher position
in manufacturing and engineering practice. The men whosc
training has been confined largely to the machine shop and
tool-room often find it difficult to apply mathematical theories
to shop problems. Because of this fact, most of the examples
in this book are taken directly from the shop, and they have
been largely selected from problems which shop men have
repeatedly submitted for solution. Another feature of the
book which is considered important is that numerous examples
are included so that the method of actually applying a rule
or formula will be entirely clear.
THE AUTHORS.
New York, March, 1920.
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2 SHOP MATHEMATICS

intendent, each must possess the personal qualifications which
fit him for his position. Nevertheless, the machinist whose
ambition impels him to the reading and study of books and
publications that explain the principles and practice of me-
chanics, usually is promoted; and this important fact deserves
wider recognition than it receives among most shop men.

Importance of Study of Shop Mathematics. — Without the
aid of the processes of arithmetic, even the simplest mechanical
work could hardly be done. In the design of machinery,
and still more in the design of great engineering structures,
calculations of a more or less advanced nature become abso-
lutely necessary. Any mechanic with a limited education
who contemplates the study of mathematics should make
certain that he has fully mastered arithmetic. Just as mathe-
matics is the basic science underlying engineering, so arith-
metic is the basis of all mathematics. Without a thorough
understanding of every process in arithmetic, other mathe-
matical studies become difficult, if not impossible.

Many shop men refrain from using handbooks and other
mechanical books containing formulas, because they believe
that an understanding of algebra is necessary in order to
make use of such formulas as are given in handbooks. This
idea is erroneous, as will be apparent after reading carefully
that part of Chapter III dealing with the use of formulas.
With few exceptions, the formulas given in handbooks intended
for machine shops can be used by anyone who thoroughly
understands arithmetic. In mathematics, a number of ab-
breviations, signs, and symbols are also used; and it is of
considerable value to the man who reads mechanical literature
and occasionally uses formulas to memorize the commonly
used signs and abbreviations. This will facilitate his prog-
ress and make it easier for him to grasp the meaning of a
formula which otherwise would be obscure.

Closely allied to the use of formulas is the use of diagrams.
A formula records a mathematical statement by means of sym-
bols or letters, while a diagram records a similar statement
graphically by means of lines. Many mechanics regard a dia-



Digitized by GOOS[Q



4 SHOP MATHEMATICS

sary. that the toolmaker have a knowledge of mathematics
as it is when he has to lay out the work for himself as he
goes along. Many toolmakers point to this fact, stating that
a knowledge of mathematics is useless to them. But they
overlook the fact that a toolmaker who has a knowledge of
mathematics is unlikely to remain a toolmaker always, be-
cause his knowledge fits him for higher positions which he
could not satisfactorily fill without it. Practical experience
is absolutely necessary, but when coupled with a good techni-
cal education it is far more valuable to the possessor.
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6 SHOP MATHEMATICS

Division is simply the reverse of multiplication. The num-
ber which is to be divided is called the dividend, and the number
by which we divide is called the divisor. If one number is to
be divided by another, simply invert the divisor, and proceed
as in multiplication. To invert the divisor means that we.
place the denominator as numerator, and the numerator as
denominator; for instance, £, inverted, is §. Suppose that we
wish to divide § by {5. We have then,

3.7 _3516_48_ 20 .5

4 16 4 7 28 28 7

If the number to be divided contains a whole number be-
sides a fraction, we first convert this into a fraction, and then
proceed as before. Suppose that we wish to divide 2} by 33.
We have then,

Cancellation. — Cancellation is the process of taking out
equal factors in both the numerators and denominators of
fractions to be multiplied, and is used for simplifying the
work of multiplication of fractions. If the fractions § X 1§
are to be multiplied, the work can be done more easily and
quickly by first cancelling factors in the numerators and de-
nominators as far as possible. If a dividend and divisor are
both divided by the same number, this does not change the
quotient. In the preceding example, the numerator 5 and
the denominator 20, or #f, are equal to 4, which is obtained
when 5 and 20 are each divided by 5. In the same way, the de-
nominator 6 and the numerator 18 can be reduced to 1 and 3,
respectively. The common method of procedure is to draw
a line through 5 and 20 and place 1 above the 5 and 4 below
the 20. The figure 6 is also crossed out and replaced by 1
and 18 by 3. Thus:
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8 SHOP MATHEMATICS

in the product, and we place the decimal point in the product
so that there are six figures to the right of the decimal point.

Rule: Place the multiplier under the multiplicand, disregard-
ing the decimal point. Multiply as in whole numbers, and in
the product, point off as many decimal places as there are decimal
places in both the multiplier and multiplicand. If there are not
enough figures in the product to point off the required number of
decimal places, prefix ciphers, put in the decimal point, and
place a cipher to the left of the decimal point to indicate .that
there is no whole number.

Division of Decimal Fractions. — When dividing decimal
fractions, the dividend, divisor, and quotient are placed in
the same manner as in the division of whole numbers. If
there are not as many decimal places in the dividend as in the
divisor, add ciphers to the one having the smaller number of
decimal places, until there is an equal number, and then
divide as whole numbers, disregarding the decimal point.

Example. — Divide 3.25 by 0.0625.

dividend 3.2500 | 0.0625 divisor
3125 | 52 quotient
1250
1250

In the example above, there are two decimal places in 3.25
and four in 0.0625. Therefore add ciphers to 3.25 until there
are four decimals in that number, thus: 3.2500. Now divide
as when dividing whole numbers, and pay no attention to the
decimal point. If there should be a remainder, the division
would be continued as in the example below:

Example. — Divide 23.1875 by o.25.

23.1875 | o.2500
22500 92.75
6875
5000
18750
17500
12500
12500
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12 SHOP MATHEMATICS

is an example of direct proportion. If the diameter increases,
the circumference will increase, and if the diameter is made
less, the circumference will be less.

If the relation between two quantities is such that as the
one increases the other becomes smaller, and as the one de-
creases the other becomes greater in the same rate, they are
in imverse proportion. The time required to build a machine
shop is inversely proportional to the number of men em-
ployed, and ‘the greater the number, the shorter the time.

Two quantities are said to be in compound proportion when
the relation between them is such that the increase or decrease
of one affects the other by a combination of two or more
direct or inverse proportions. If one man can mill 50 steel
castings in a day of 10 hours, then 5 men can mill 225 similar
castings in 9 hours. The number of castings milled by one
man in 1o hours is in compound proportion to the number
milled by 5 men in g hours, because the proportion is a com-
bination of the proportion between the number at work and
the proportion of the time they are working.

In calculations, a proportion is usually written as below:

5:6::10:12

which is read: five is to six as ten is to twelve.

In every proportion of four terms the product of the two
extreme or outside terms equals the product of the two mean
or intermediate terms; thus, in the proportion §:6::10: 12,
the product 5 X 12 equals the product 6 X 10.

In a proportion, the sign (:) can be substituted by the
division sign (<), and the sign (::) by the equal sign (=),
so that the proportion above may be written 5§ + 6 = 10 + 12
or } =1§. The fraction on either side of the equal sign re-
duced to its lowest terms is called the ratio of the proportion.

In the example above, the fraction § is already reduced to
its lowest terms, so that § is the ratio.

Examples of Direct Proportion. — If a gang of men work
14 days in assembling 6 milling machines, how long would it
require to assemble 18 milling machines?
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14 SHOP MATHEMATICS

duplicate parts in a day of 10 hours. How many automatic
sctew machines would be required for the same production if
the machines were only operated 8 hours each day?

In this example, the hours per day are in inverse proportion
to the number of screw machines used; the shorter the time,
the more screw machines are required. The example can be
solved by the method explained previously; x is the number
of automatic screw machines working 8 hours. The inverse
proportjon is written

16 : x HH 8 : 10
{ma.china operating} . { machines required) | { hours \ | { hours }
10 hours for 8-hour day perday/ ° |\ per day

Note that in an inverse proportion the corresponding quan-
tities occupy inverse or opposite places in the proportion.
Carrying out the calculation, we have

16 X 10

16><Io=8x;x=—8—=2o.

Therefore, if the operating time is reduced from 1o hours
to 8 hours, the number of machines must be increased from
16 to 20, if the same daily output is to be maintained.

Compound Proportion. — The kind of problems occurring in
compound proportion is illustrated by the following example:

Example. — If a man capable of drilling 40 forgings in a
day of 10 hours is paid 36 cents per hour, how much ought a
man be paid who drills 48 forgings in an 8-hour day, if com-
pensated in the same proportion?

When solving problems involving compound. proportion, the
following method of analysis tends to simplify the solution.
Make up a table with four columns headed, ‘First Cause,”
“First Effect,” “Second Cause,” “Second Effect,” and place
under each the respective factors given in the problem. In
the example above, the table would be arranged as below:

First Cause First Effect Second Cause Second Effect

I man 40 forgings 1 man 48 forgings
10 hours 8 hours
36 cents x cents
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22 SHOP MATHEMATICS

If there is a remainder when the last period of figures has
been moved down, place a decimal point after the figures
already obtained in the root, annex two ciphers (oo) to the
remainder, multiply the number so far obtained in the root
by 20, and proceed as before until a sufficient number of
decimal places have been obtained to give the root with suf-
ficient accuracy.

ixample : 1’25 |_11.18

IX1=1
I X 20 =20 2§
(204 1) X1 = 21
11 X 20 = 220 400
(220 4+ 1) X1 = 221
111 X 20 = 2220 17900
(2220 +8) X 8 = 17824

It will be seen from the calculation that, when multiplying
by the constant 20, the decimal point is disregarded, and the
figures obtained in the root considered as a whole number.
T'he decimal point must, however, be placed in the root as
alrendy explained before annexing the two first ciphers (not
in the given number) to the remainder, in order to give a
correct value to the root.

Square Root of Decimals. — When extracting the square
root of a decimal fraction, or when the square root of a whole
number and a decimal is required, always point off botk the
whole number and the decimal in periods of two figures each,
beginning at the decimal point, thus:

2’'17'63.56'78’s
If the number of decimal places is not an even number, the
period to the right will have only one figure instead of two.
By placing a cipher after the decimal in such cases, the last
period is made complete without changing the value of the
number, thus:
2’17°63.56'78’50
It should be borne in mind that the pointing off of periods
of two figures each should always be begun at the decimal
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moved down, and the last figure of the root found, the calcu-
lation may be proved by multiplying the root by itself, in
which case the product must equal the number given, of
which the square root has been extracted. If there is a re-
mainder, the figures obtained do not represent the exact root,
but a close approximation; if this approximate root is multi-
plied by itself, the product should very nearly equal the given
number; if not, an error has been made.

Extracting Cube Root. — Assume that the cube root of
80,621,568 is to be found. Write the number as below, leaving
space for the figures of the root as shown. Beginning at the
unit figure (the last figure at the right of a whole number),
point off the number into periods of three figures each. Ac-
cording to the total number of figures in the given number,
the last period to the left will, of course, have one, two or

three figures.
80’621’568 | Space for root.

Now find the greatest whole number, the cube of which does
not exceed the value of the figures in the left-hand period (80),
and write this number as the first figure in the root. The
cube of 4 is 64 (4 X 4 X 4 = 64), and the cube of 5 is 125
(3 X 5 X 5 =125). Hence 4 is the greatest whole number,
the cube of which does not exceed 8o, and 4, therefore, is the
first figure of the root. Subtract the cube of 4 from the left-
hand period and move down the next period of three figures,
and annex it to the remainder, thus:

80’621’568 | 4
4X4X4=04
16621

Now multiply the square of the figure in the root by the
constant 300, which is always used when extracting the cube
root by this method (42 X 300 = 4 X 4 X 300 = 4800), and

. find how many times this product is contained in the number
16,621. This gives us a trial figure for the second figure of
the root; 4800 is contained three whole times in 16,621, and
3 is, therefore, placed as the next figure of the root:
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28 SHOP MATHEMATICS

which the cube root has been extracted. If there is a re-
mainder, the figures obtained do not represent the exact
root, but a close approximation. If this approximate root is
repeated as a factor three times the product should very nearly
equal the given number; if not, an error has been made.

Extracting Roots Higher than Square or Cube Roots. —
When the root to be extracted is higher than a square or a
cube root, the index of the required root is separated into its
factors and then the roots indicated by the different factors
are extracted successively.: For example, the fourth root of
81 (v/81) is found by first extracting the square root of 81,
which equals 9. Then the square root of g is extracted to
obtain the fourth root of 81. The square root is extracted
twice in this case, because the index 4 equals 2 X 2. That 3 is
the fourth root of 81 may be proved as follows: 3 X 3 X 3 X 3
= 81, the fourth root being repeated as a factor four times.

The sixth root of a number may be obtained by extracting
the cube root and then the square root.

Example. — What is the sixth root of 64, or v64?

The index 6 equals 3 X 2 which shows that the cube and
square roots should be extracted. The cube root of 64, or
V64, equals 4, and the square root of 4, or V3, equals 2;
hence, the sixth root of 64 equals 2. The square root might
have been extracted first without affecting the result.

By using tables of squares and cubes, the fifth root of any
given number may be accurately found to several places by
interpolation, as the fifth power of a number is equal to the
product of its square by its cube. For instance, suppose that
the fifth root of 7214 is required, accurately, to five places.
A moment’s inspection of the tables will show that the product
of the square and the cube of 6, or 62 X 6® = 7776, is a little too
large. Looking into the fifties and inserting the decimal point
in the proper place to get the powers of 5.9, it will be found
that the fifth power of 5.9, or 5.9% equals 5.9* X 5.9 = 7149.2.

The method of obtaining this fifth root will be further
explained. By referring to the tables, it will be seen that
the square of 59 is 3481; hence, the square of 5.9 is 34.8I,
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The symbols or letters used in formulas simply are inserted
instead of the actual figures or numerical values which are
substituted in the formula for each specific problem that is
to be solved. For instance, if the letter S in a formula repre-
sents the speed in feet per minute of a revolving or other
moving part, when using this particular formula, the figure
or numerical value representing the speed is substituted
for S. When all the different letters that may be in the for-
mula are replaced by numerical values or numbers, the result
required is obtained by simple arithmetical processes. The
letters of the alphabet are the symbols commonly used in
formulas, and the signs are simply the ordinary signs such as
are used for arithmetical calculations with some additional
ones that are necessary for special purposes. . Letters from
the Greek alphabet are often used to designate angles, although
in this book letters of the English alphabet have been used
instead in most cases.

A Simple Rule and Formula Compared. — The relation be-
tween a rule and a corresponding formula will be illustrated.
If the speed of a driving pulley and its diameter are known,
the speed of the driven pulley may be determined by the
following rule:

Rule: Multiply the speed of the driving pulley in revolu-
tions per minute by its diameter, and divide the product by
the diameter of the driven pulley, to obtain the speed of the
driven pulley.

Now if S = the speed of the driving pulley; D = the diam-
eter of the driving pulley; d = the diameter of the driven
pulley; and s = the speed of the driven pulley, then the fol-
lowing formula represents the rule previously given:

s = SXD .
d

This formula merely shows that, to obtain the speed (s) of
the driven pulley, the speed (S) of the driving pulley must
be multiplied by its diameter, and the product divided by the
diameter (d) of the driven pulley. It is evident, then, that
the formula is practically a picture of the rule and enables
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scale. When we count 1, 2, 3, etc., we refer to the numbers
that are larger than o (corresponding to the degrees above
the zero point), and these numbers are called positive num-
bers. We can conceive, however, of numbers extending in
the other direction of o; numbers that are, in fact, less than
o (corresponding to the degrees below the zero point on the
thermometer scale). As these numbers must be expressed by
the same figures as the positive numbers, they are designated
by a minus sign placed before them. For example, —3 means
a number that is as much less than, or beyond, o in the nega-
tive direction as 3 (or, as it might be written, +3) is larger
than o in the positive direction.

A negative value should always be enclosed within pa-
rentheses whenever it is written in line with other numbers;
for example: \
17 + (—13) — 3 X (—0.76).

In this example —13 and —o0.76 are negative numbers,
and by enclosing the whole number, minus sign and all, in
parentheses, it is shown that the minus sign is part of the
number itself, indicating its negative value.

It must be understood that when we say 7 — 4, then 4 is
not a negative number, although it is preceded by a minus
sign. In this case the minus sign is simply the sign of sub-
traction, indicating that 4 is to be subtracted from 7; but
4 is still a positive number or a number that is larger than o.

Rules for Adding Negative Numbers. — It now being clearly
understood that positive numbers are all ordinary numbers
greater than o, while negative numbers are conceived of as
less than o, and preceded by a minus sign which is a part of
the number itself, we can give the following rules for calcula-
tions with negative numbers.

Rule: A negative number can be added to a positive number
by subtracting its numerical value from the positive number.

Examples:

4 +(-3)=4-3=1
16 +(—=7) +(=6) =16 —7—6=3.
327 + (—o0.5) — 212 = 327 — 0.5 — 212 = 114.5.
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Multiplication and Division of Negative Numbers. — Rule:
When a positive number is multiplied or divided by a nega-
tive number, multiply or divide the numerical values as
usual; but the product or quotient, respectively, becomes
negative. The same rule holds true if a negatlve number is
divided by a positive number.

Examples:
4X(=3) = —12. (=3) X4 =—12.
IS 5
=3 5 3 5.

Rule: When two negative numbers are multiplied by each
other, the product is positive. When a negative number is
divided by another negative number the quotient is positive.

Examples:

(—4) X (=3) =12, :i; = 1.333.

When Subtrahend is Larger than Minuend. — If, in sub-
traction, the number to be subtracted is larger than the num-
ber from which it is to be subtracted, the calculation can be
carried out by subtracting the smaller number from the
larger, and indicating that the remainder is negative.

Examples: .

3—-5s=-(5-3=-

In this example 5 cannot, of course, be subtracted from 3,
but the numbers are reversed, 3 being subtracted from g5, and
the remainder indicated as being negative by placing a minus
sign before it.

227 — 375 = —(375 — 227) = —148.

The examples given, if carefully studied, will enable the
student to carry out calculations with negative numbers when
such will be required in solving triangles.
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38 SHOP MATHEMATICS

Omission of Multiplication Signs in Formulas. — The sign
for multiplication, or (X), is frequently omitted in formulas.
In the following formula for determining the horsepower of a
steam engine, H = the indicated horsepower of the engine;
P = the mean effective pressure of the piston in pounds per
square inch; L = the length of the stroke in feet; A = area
of the piston in square inches; and N = the number of strokes
made by the piston per minute. Then,

g = PXLXAXN
33,000

Instead of placing the multiplication signs between the dif-
ferent letters, these are generally omitted in this and other
formulas. When the signs are omitted in this particular
formula, it is written as follows:

o= PLAN
33,000

The signs indicating multiplication are not necessary be-
cause it is understood by those who are familiar with the use
of formulas that the letters representing the numerical values
are to be multiplied, and the signs are left out as a matter of
convenience. The expression P X L X A X N is just the
same as PLAN. All of the other signs are indicated the
same as in arithmetic. The multiplication sign is never left
out between two numbers; thus, 24 always means ‘‘twenty-
four” and ‘“two times four” must be written 2 X 4. The
expression ‘“two times P,” however, may be written 2P
instead of 2 X P. The figure is ordinarily written first in an
expression of this kind, and it is known as the ‘ coefficient”’;
thus, in the expression 2P, 2 is the coefficient of P. When
the letter is written first, the multiplication sign is inserted,
as, for example, P X 2. When two letters represent one
value, as in the formula previously given for determining the
center distance between meshing gears, the symbol Ng does
not of course represent N X g, but it is the same as a single
letter or symbol, which represents a numerical value.

Why Parentheses are Used in Some Formulas. — When
expressions occurring in formulas are enclosed by parentheses
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42 SHOP MATHEMATICS

the sphere. Assume that the formula is to be transposed for

determining the value of d. V = 0.5236d%; then &® = .
0.5236

It follows, then, that the cube root of d equals the cube root of

I \/
m, or ‘\/? = 0.5236. Asd = ‘\/d' thend = 5236
If the volume of the sphere is 4.1888 cubic inches, then
d = /41888 _ Y& -, inches.
0.5236

Transposition when Formula Requires Extraction of a
Root. — The following example illustrates how a formula
may be transposed to determine the value of a quantity cov-
ered by a root sign.

If A equals the length of a hypotenuse of a right-angled
triangle, B equals the altitude, and C equals the length of the
base, then A = VB? + C*. If this formula is to be transposed
for determining the value of C (lengths A and B being known),
the first step is to remove the square-root sign, because C?
cannot be transposed while it is covered by this sign. Now,
if A equals V B? 4 (%, it follows that the square of 4 equals
the square of V' B? + (%, and the square of V B2 4+ C? is the
same as B? 4+ C?; that is, the square of the expression is
obtained by simply removing the square-root sign. The
reason why this is true will, perhaps, be clearer if numerical
values are substituted for the letters. Suppose B = 4 and
C = 3, then V4 +33E V25 = 5, and the square of § = 25.
The sum of 4 + 3? also equals 25.

It is evident, then, that A% = B 4 C%. The expression
has now been changed so that it can be transposed, the square-
root sign having been removed. Thus, 4% — B? = C?, or, if
the formula is written in the usual manner with the letter
representing the quantity to be determined placed on the
left-hand side of the equals sign, C* = A2 — B%. Now, the
procedure is the same as for the formula previously referred
to for determining the diameter of a spherical body of given
volume. Thus, VC? = \/A’ - B?, and as C = V(7 it fol-
lows that C = \/ A? —
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of the known base. Either the longer or the shorter side may
be considered as the base, the altitude being the side at right
angles to the base. If the area of the rectangle is 96 square
inches and the length of the base is 12 inches, then the height
equals 96 + 12 = 8 inches. '

One square foot equals 12 X 12 = 144 square inches. If
the area is given in square feet, it can, therefore, be trans-
formed into square inches by multiplying by 144. If the area
is given in square inches, it can be transformed into square
feet by dividing by 144.

g
PARALLELOGRAM , s E
ACUTE-ANGLED 2
TRIANGLE
i
la an.
BASE = BASE
A B
ol
1808CELES
TRIANGLE
(o} D

Fig. 1. Parallelogram and Triangies

Parallelograms. — Two lines are said to be parallel when
they have the same direction; when extended, they do not
meet or intersect, and the same distance is maintained be-
tween the two lines at every point. Any figure made up of
four sides, of which those opposite are parallel, is called a
parallelogram. The square and rectangle are parallelograms
in which all the angles are right angles. At A, Fig. 1, is shown
a parallelogram where two of the angles are less and two more
than go degrees. A line drawn from one side of a parallelogram
at right angles to the opposite side is called the height or
altitude of the parallelogram. Dimension # is the altitude, and
¥ is the length or base.
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_ base and the altitude; thus the area of the triangle shown at
Bin Fig. 1 equals 4 X w X 2. If w equals g inches and 3,
6 inches, then the area equals 4 X 9 X 6 = 27 square inches.
The area of a triangle may also be found by the following
rule: The area of a triangle equals one-half the product of
two of its sides multiplied by the sine of the angle between
them. The application of this rule is dealt with in Chapter
XI. (See the paragraph headed ‘‘Areas of Triangles.”)

If the area and base of a triangle are known, the altitude
can be found by dividing twice the area by the length of the
base. If the area and the altitude are known, the base is
found by dividing twice the area by the altitude. If the area

be—-—n ——

le— - — ..
g
°©

re————- K
\

—

Fig. 4. Trapezoid Fig. 6. Trapezium

of a triangle is 180 square inches, and the base is 18 inches,
then the altitude equals (2 X 180) + 18 = 20 inches.

Trapezoids. — When a figure is bounded by four lines, of
which only two are parallel, it is called a frapezoid. The
height of a trapezoid is the distance L, Fig. 4, between the
two parallel lines H and K. The area of a trapezoid equals
one-half the sum of the lengths of the parallel sides multi-
plied by the height. The area of the trapezoid in Fig. 4 thus
equals 3 X (H+K) X L. If H =16 feet, K = 24 feet,
and L = 14 feet, then the area = 3(16 + 24) X 14 = 280
square feet.

Trapeziums. — When a figure is bounded by four lines, no
two of which are parallel, as shown in Fig. s, it is called a
propezium. The area of a trapezium is found by dividing it
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Examples. — The diameter of a circle is 6 inches, find the
area. : :

Using the formula given, we have:

Area = 6% X 0.7854 = 6 X 6 X 0.7854 = 28.2744 square
inches.

The area of a circle is 95.033 square inches, find the radius.

Using the formula given, we have:

Radius = V/95.033 + 3.1416 = 5.5 inches.

Circular Sectors. — A figure bounded by a part of the cir-
cumference of a circle and two radii is called a circular sector.
(See Fig. 6.) The angle b between the radii is called the angle

PERIPHERY OR

GCIRCUMFERENCE P"—L \hl

L—

N

Fig. 6. Circle, Circular Sector, and Circular Segment

of the sector, and the length L of the circumference of the
circle is called the arc of the sector.
If R = radius of circle of which the sector is a part;

b = angle of sector, in degrees;
L = length of arc of sector;
A = area of sector;

then the formulas below are used:
L=RXbX3.1416=2XA_

180 R’
p=t80 XL .
R X 3.1416’
4o LXR

2
R=2XA=180XL .
L b X 3.1416
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‘I'hee taellus r of the circle inscribed in an equilateral tri-
nigle (aee 1. B) ecquals the side multiplied by o.289.

Ihe 1wedlus R of the circumscribed circle equals the side
multiplind hy o.877.

I the vadius of the circumscribed circle is known, the side
ta fonnl by multiplying the radius by 1.732.

I the 1adius of the inscribed circle is known, the side is
Bl by multiplying the radius by 3.464.

e aten Wl an wuilateral triangle equals the square of the
ahle wnltiplied by o.qg8: or, the square of the radius of the
Vi i g ddele waltiplied by 1.200; or, the square of the
i line e the fnweritad ciecle multiplied by 5.196.
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0.866 X S;
S;
= R = 1.155 X r;
. A =2508 X 8 =2.598 X R* = 3.464 X 1.
The Heptagon: The heptagon (see Fig. 9) has seven sides,
and the angle between two adjacent sides is found as follows:

r
R
S

N = number of sides = 7;

— 360 _ 360
Angle a N ;

Angle between adjacent sides = 180 — 51? = 128% degrees.

= 51% degrees;

Using the same letters as in the formulas previously given,
we have for the heptagon:

r = 1.038 X S;

R = 1.152 X S;

S =0.868 X R = 0.963 X r;,

A =3.634 X 8 =2.736 X R? = 3.371 X r%

The Octagon: The angle between two adjacent sides of the
octagon, as shown in Fig. g, is 135 degrees.

Using the same meaning for the letters as previously given,
the formulas for the octagon are:

r = 1.207 X S;

R =1.307 X S;

S =0.765 X R = 0.828 X r;

A = 4.828 8 = 2.828 X R? = 3.314 X 1.

Practical Examples Involving Areas. — It is often necessary
to determine the area of some surface, as, for example, when
a surface is subjected to a certain pressure, and it is essential
to obtain the total pressure, or the pressure per square inch
when the total pressure is known.

Example. — The diameter of the plunger of a hydraulic
press is 10 inches, and it is subjected to a pressure of 550
pounds per square inch. What is the total pressure on the
plunger?
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CHAPTER V

HOW TO CALCULATE VOLUMES, WEIGHTS, AND
CAPACITIES

CALCULATIONS relating to volumes may be necessary not
only to determine the volume of a solid or hollow object,
but also as a means of comparing the volumes or sizes of
solid bodies or hollow receptacles of different proportions.
Volumes are also determined when estimating how much a
part made of a given material will weigh, as, for example,
when figuring the weights of castings when only the drawings

are available. The capacities of hollow objects such as tanks

or other receptacles are determined by first finding the volume.
For instance, if the diameter and length (or height) of a
cylindrical tank are known, and the problem is to determine
how many gallons it will hold, the capacity in gallons can be
determined readily if the volume is known. Volume is ex-
pressed either in-cubic inches or in cubic feet.

Volume of a Cube. —The cube (Fig. 1) is a solid body
having six surfaces or faces, all of which are squares; as all
the faces are squares, all the sides are of equal length. If the
side of a face of a cube equals S, the volume equals S X § X §
or, as it is commonly written, S2.

Assume that the length of the side of a cube equals 3 inches;
then the volume equals 3 X 3 X 3 = 27 cubic inches.

When the volume of a cube is known, the length of the
side is found by extracting the cube root of the volume.

Assume that the volume of a cube equals 343 cubic inches.
If we extract the cube root of 343, we find that the side of
the cube is 7 inches.

One cubic foot equals 12 X 12 X 12 = 1728 cubic inches;
therefore, a volume given in cubic feet can be transformed
into cubic inches by multiplying by 1728; if the volume is

56
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these areas added together to obtain the area of the whole -
polygon.

Assume that it is required to find the volume of a prism,
the base of which is a regular hexagon having a side S; the
length of the prism is L. The volume of this prism is:

. 2.508 X 8% X L. _

If, in this example, S equals 1} inch, and L equals ¢ inches,
then the volume equals: .

2.508 X 142 X 9 = 2.508 X 1.5 X 1.5 X 9 = 52.6095 cubic
inches. :

Volume of a Pyramid. — A solid body having a polygon for
the base and a number of triangles all having a common

e e e
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Fig. 8. Prism Fig. 4. Pyramid Fig. 5. Frustum of Pyramid

vertex for the sides is called a pyramid. In Fig. 4, a pyramid
is shown in which the base has four sides and the side surfaces
are made up of triangles having two equal sides. If a line is
drawn from the vertex of the pyramid at right angles to the
base, the length of this line is the altitude or height H of the
pyramid.

The volume of a pyramid equals the base area multiplied
by one-third of the height. It is, therefore, necessary to find
the base area before the volume can be found.

Assume that it is required to find the volume of a pyramid,
the base of which is a regular pentagon, having a side S; the
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then
H
="'E—X (Al + 4 An + A!)

As this formula applies to all regular solid bodies, it is use-
ful to remember. For ordinary calculations, however, the
formulas previously given for each kind of solid should be
used because of greater simplicity.

Volume of a Cylinder. — A solid body having circular and
parallel end faces of equal size is called a cylinder. (See Fig. 6.)
The two parallel faces are called bases. The height or altitude
H of a cylinder is the distance between the bases measured
at right angles to the base surfaces.

The volume of a cylinder equals the area of the base multi-
plied by the height. The area of the base, therefore, must be

T B
| ‘
1

Fig. 6. Cylinder Fig. 7. Cone Fig. 8. Frustum of Cone

found before the volume can be obtained. If the diameter
of the base is D, the area of the base equals 0.7854 D®. The
volume of the cylinder then equals:

0.7854 X D* X H.

If D = 3 inches and H = j inches, then the volume equals
0.7854 X 32 X 5 = 0.7854 X 3 X 3 X §5 = 35.343 cubic inches.
Volume of a Cone. — A solid body having a circular base
and the sides inclined so that they meet at a common vertex,
the same as in a pyramid, is called a cone. (See Fig. 7.) If a
line is drawn from the vertex of the cone at right angle to
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point inside of the sphere called its center. The diameter of
a sphere is the length of a line drawn from a point on the
surface through the center to the opposite side. (See Fig. 9.)

The volume of a sphere equals 3.1416 multiplied by four-
thirds of the cube of the radius, or 3.1416 multiplied by one-
sixth of the cube of the diameter.

If R = radius of the sphere, D = diameter,and V = volume,
this rule can be written as formulas thus:

V = 3.1416 X $ X R® = 4.1888 X R%;
V = 3.1416 X § X D® = 0.5236 X D%

If the volume of a sphere is known, the radius can be found
by extracting the cube root of the quotient of the volume
divided by 4.1888; the diameter can be found by extracting
the cube root of the quotient of the volume divided by o.5236.

IPNE&ICAL SEGMENT

I
] —\ - -'\
| |
\ !
l
‘\ /’ SPMERICAL .
S ZONE

Fig. 9. Sphere Fig. 10. Spherical Sector Fig. 11. Spherical Segment and Zone

Written as formulas, these rules are:

— I_K_. P ) V .
R = V41888’ b= Vo.5236

Volume of Spherical Sector and Segment. — A spherical
sector is a part of a sphere bounded by a section of the spherical
surface and a cone, having its vertex at the center of the
sphere, as shown in Fig. 10. The volume of a spherical sector
can be found if the radius R and the height H are known.

The formula for the volume V is:

V = 2.0944 X R X H.
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Assume that the diameter C, = 3 inches, the diameter
C, = 4 inches, and the height of the segment equals 1 inch,
then the volume is

0.5236 X 1 X (3443’—+ }%‘1 + x’) -

0.5236 X 1 X (2:7 +34§+ 1) = 0.5236 X 1 X 19.75= 10.3411
cubic inches '

[If a plane parallel with the end faces and passing through
the center of the sphere intersects the zone, consider the zone
as two zones, one zone being on each side of the center. Cal-
culate the volume of each, and add these to find the total
volume. ]

Dimensions of a Rectangular Area in the Same Ratio as
the Sides of a Given Rectangle. — To find the dimensions of
a rectangular area that shall have the same ratio between
the sides as a given smaller rectangle, divide the area of the
required rectangle by the area of the given rectangle, and
extract the square root of the quotient. The square root is
the factor by which the dimensions of the given rectangle
are to be multiplied to yield the dimensions of the required
rectangle. For example, if a rectangular steel plate measures
3 by 4 feet, what are the dimensions of a plate having 192
square feet, with the sides of the same ratio?

The area of the first plate mentioned is 3 X 4 = 12 square
feet. 192 feet divided by 12 equals 16. The square root of
16 is 4. Multiplying both dimensions of the 3- by 4-foot plate
by 4 gives 12 and 16. 12 X 16 = 192 square feet, the required
rectangle. .

The same procedure is followed for a solid as in the case
of a rectangle, except that the cube root of the ratio of the
given and required solids is found, and dimensions of the given
solid are multiplied by the cube root, the result being the
dimensions of the required solid. .

Example. — A tank is 3 by 4 by 5 feet, and it is desired to
construct another tank containing 480 cubic feet with sides
n the same ratio. What are the dimensions? Divide 480
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If the outside diameter of a hollow cylinder is A, the inside
diameter B, and the length L, the following formula may be
used for finding the volume of the cylinder:

Volume = 0.7854 X (A% — B?) X L.

Sectional Method of Determining Volume of a Casting. — In
Fig. 13 is shown a knee made from cast iron, all the necessary
dimensions for calculating the weight being given. To calcu-
late the volume of a casting of this shape, it is divided into

\—-—-———- E
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Fig. 13. Bracket or Knee— Another Example illustrating Method of
Estimating Weight

prisms or other simple geometric shapes, and the volume of
each of the parts is found, after which these volumes are
added together to find the total volume of the casting. The
piece shown in Fig. 13 can be divided into three parts, the
volume of each of which can be calculated by simple means.
One part has for base the rectangle HMLK, another the
rectangle PFMN, and the base of the third is bounded by
two straight lines EF and FG, and the circular arc EG. The
length of all the parts in this case equals the length of the
casting, or 5 inches, as shown.

The area of the rectangle HMLK equals 6 X 2 = 12 square
inches. This area multiplied by 5 equals the volume of this
part in cubic inches; 12 X § = 60 cubic inches.

The length of the line NM is 4 inches (6 — 2 = 4), and,
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and the total volume multiplied by the weight per cubic
inch of cast iron. Very small fillets, like those shown at N
and R, are not considered, and the area NRST is regarded
as a perfect rectangle. .

. In the example given, the casting is divided into five parts;
one is a hollow cylinder with an outside diameter 4; two parts
have for bases the rectangles NRST and KMTU; and two
parts have for bases the areas HKL and OML, respectively,
each being bounded by two straight lines and a circular arc.

For an example, assume that, in Fig. 14, A4 = 7 inches;
B = 4 inches; C = 3 inches; D = 4 inches; E = 12 inches;
F = 10 inches; and G = 8 inches.

The volumes of the different parts will then be found as
follows:

Volume of hollow cylinder having an outside diameter of
7 inches, and inside diameter of 4 inches, and length of 10
inches: '

0.7854 X (72 — 4%) X 10 = 0.7854 X (49 — 16) X 10
= 0.7854 X 33 X 10 = 259.18 cubic inches.

Volume of section having for base the rectangle NRST:
4 X 5 X 8 = 160 cubic inches.

Volume of section having for base the rectangle KMTU:
33 X 7 X 8 = 196 cubic inches.

Volume of section having for base the area HKL:
2
(3% X 3% — ﬁ—?}’i@) X 8 = (12.25 — 9.62) X 8

= 2.63 X 8 = 21.04 cubic inches.

The volume of the section having for base OM L equals the
volume of the section having for base HKL and is, conse-
quently, 21.04 cubic inches.

The total of the five sections then equals:

259.18 + 160 + 196 + 21.04 + 21.04 = 657.26 cubic inches.

The total weight of the casting equals 657.26 X o.260
= 170.89 pounds.
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CHAPTER VI
FIGURING TAPERS

IN all circular or round pieces of work, the expressions
‘““taper per inch” and ‘‘taper per foot” mean the taper on
the diameter, or the difference between the smaller and the
larger diameter of a piece, measured one inch or one foot
apart, as the case may be. Suppose that the diameter at
one end of the tapering part shown at 4 in Fig. 1 is one inch,
and the diameter at the other end, one and one-half inch,
and that the length of the part is 12 inches, or one foot. This
piece, then, tapers one-half inch per foot, because the dif-
ference between the diameters at the ends is one-half inch.
The diameters at the ends of the part shown at B are {5 inch
and } inch, and the length is one inch; this piece, therefore,
tapers 1% inch per inch. Tapers may also be expressed for
other lengths than one inch and one foot. For example, the
piece shown at C tapers ¢y inch in 5 inches, the difference
between 1% and 1} being #5 inch.

If the taper in a certain number of inches is known, the
taper in 1 inch can easily be found. If the taper in 5 inches
is 5 inch, the taper in 1 inch equals the taper in 5 inches
divided by s, or, in this case, 5 + 5 = ¢, which is the taper
per inch. The taper per foot is found by multiplying the
taper per inch by 12. In this case, the taper per foot equals
12 X g5 = $inch. The length of the work is always measured
parallel to the center line (axis) of the work, and never along
the tapered surface.

The problems met with in regard to figuring tapers may be
of three classes. In the first place, the figures for the large
and the small ends of a piece of work may be given, and the
length of the work, as at E, the problem being to find the
taper per foot. In the second place, the diameter at one

72
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length of the work, 7 inches. The taper in 7 inches is then
equal to the difference between 2§ inches and 2% inches,
or y5 inch. The taper in one inch equals 5 divided by 7,
or {5 inch; and the taper per foot is 12 times the taper per
inch, or 12 times {§, which equals § inch. The taper per foot,
then, equals § inch.

If the length is not expressed in even inches, but is sy
inches, for instance, as at F, the procedure is exactly the same.
Here the diameter at the large end is 2.216 inches and at the
small end, 2 inches. The taper in s inches is, therefore,
0.216 inch. This is divided by 595 to find the taper per inch.

+s3 = -8 16 _
0.216 + § 6 0.216 = —< 0.216 X 8 0.0416.

The taper per inch, consequently, equals 0.0416 inch, and
the taper per foot is 12 times this amount, or } inch, almost
exactly.

Expressed as a formula, if all dimensions given are in inches,
the previous calculation would take this form:

large diameter — small diameter
length of work

Taper per foot = X 12.

It makes no difference if the large and small diameters are
measured at the extreme ends of the work or at some other
place on the work, provided the length or distance between
the points where the diameters are given, is stated. At H,
Fig. 1, the smaller and larger diameters are given at certain
distances from the ends of the work, but the distance (3%
inches) between these points is given, and the calculation is
exactly the same as if the work were no longer than 33 inches.
The following examples will tend to show how the figuring
of the taper per foot enters into actual shop work.

Example 1. — The blank for a taper reamer is shown at .{.
Fig. 2. The diameters at the large and small ends of the fluics,
and the lengt.h of the fluted part, are indicated on the dritw-
ing. It is required to find the taper per foot in order to be
able to set the taper-turning attachment of the lathe.

-
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by 12; multiply the product by the length of the taper, and
subtract the result from the large diameter to find the small
diameter, or, add the result to the small diameter to find the
large diameter.

Referring to sketch D, Fig. 1, the diameter at the large
end of the work is 1§ inch, the length of the work is 3} inches,
and the taper per foot is § inch. The problem is to find the
diameter at the small end. In this case we simply reverse
the method employed in the previous problems, where it was
required to find the taper per foot. In this case, we know that
the taper per foot is equal to § inch. The taper in one inch
must be one-twelfth of this, or § inch divided by 12, which
equals {5 inch. Now, the taper in 3} inches, which we want
to find in order to know what the diameter is at the small
end of the work, must be 3} times the taper in ome inch, or
34 times 1%, which equals g%. The taper in 3} inches, then,
is g5 inch, which means that the diameter at the small end
of a piece of work, 3} inches long, is g inch smaller than the
diameter at the large end. The diameter at the large end,
according to our drawing, is 1§ inch. The diameter at the
small end, being g% inch smaller, is, therefore, 13# inch.

Expressed as a formula, the previous calculation would take
this form: '

Diameter at small end =
Diameter at large end — (ggpg;rLfogt X length of taper).

Now take a case where the diameter at the small end is
given, as at A, Fig. 3, and the diameter at the large end is
wanted. The figuring is exactly the same, except, of course,
the amount of taper in the length of the work is added to the
small diameter to find the large diameter. When the large
diameter is given, the amount of taper in the length of the
work is sublracted to find the small diameter.

Referring again to sketch A4, Fig. 3, where the small diameter
is given as 1.636 inch, the length of the work as 5 inches,
and the taper per foot as § inch, how large is the large diameter?
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inches. Consequently, the dimension from where the di-
ameter 3} inches is given, to the small end, is 7 inches. The
taper in one inch is gy inch; in 7 inches, therefore, it is g
inch. The diameter at the small end of the work is §5 inch
smaller than 3} inches, or 3gy inches, the same as found pre-
viously when we figured from the extreme large diameter of
the taper.

To Find the Distance between Two Given Diameters when
the Taper per Foot is known. — To find the dimension between
two given diameters of a piece of work, when the taper per
foot is given, subtract the diameter at the small end from
the diameter at the large-end, and divide the remainder
by the taper per foot divided by 12.

Assume that the diameter at the large end of the piece is
1.750 inch, at the small end, 1.400 inch, and the taper per
foot is 0.600 inch. How long is this piece of work required
to be, in order to have the given diameters at the ends, with
the taper stated? We know that the taper per foot is 0.600
inch. The taper per inch is then o.600 divided by 12, or o0.050
inch. The difference in diameters between the large and the
small ends of the work is 1.750 — 1.400, or 0.350 inch, which
represents the taper in the length of the work. Now, we know
that the taper is 0.050 inch in one inch. How many inches
does it then require to obtain a taper of o.350 inch? This is
found by seeing how many times o.050 is contained in 0.350,
or, in other words, by dividing o.350 by o.050, which gives
7 as the result. This means that it takes 7 inches for a piece
of work to taper o.350 inch, if the taper is 0.600 per foot. The
length of the work, consequently, is 7 inches in the case
referred to.

Expressedgs a formula, the previous calculation would take

the form: "
Length o%‘vork _ dia. at large end — dia. at small end

taper per foot + 12

The taper %oot divided by 12, as given in the formula
above, of course simply represents the taper per inch. The
formula may, therefore, be written:
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Figuring Offset of Tailstock for Taper Turning. — When a
lathe is not provided with a taper attachment, the tailstock
center is set over from its central position an amount depend-
ing upon the amount of taper and length of the part to be
turned. This offset adjustment may easily be calculated
approximately. If the tail-center is moved out of alignment
with the live-center an amount A4, as shown in Fig. 5, then the
center of the work at the tail-center end will come nearer to
the line of traverse BC of the tool than the center of the work
at the live-center end, and the diameter of the piece, when
turned, will be smaller at the tail-center than at the live-center.

When the tail-center is set over an amount A, the radius
at the small end will be a dimension D smaller than the radius
at the large end. This dimension D is also equal to the amount
A which the tail-center has been set over, and the taper of
the work in the length between the centers, therefore, is two
times the amount the tailstock is set over; or, in other words,
the tailstock is set over one-half of the taper in the length of
the work.

When Taper per Foot and Length are known. — The amount
which the tailstock must be set over can be determined if
the taper per foot of the work and the length are known.
Assume that a piece of work, 73 inches long, is required to be
turned with a taper per foot equal to § inch. We must first
know how much the work tapers in 7} inches. This is found
by dividing § by 12, and multiplying the quotient by 73}:

( +12) X 75 = $%.

The taper in 7} inches, thus, is §§ inch, and as the tailstock
is moved one-half of this, it is set over §§ inch.

When the taper per foot and the length of the work are
given, the amount to set over the tailstock can be calculated
from the following formula:

Amount to set taper per foot .
over tailstock — 3 X (P—_P‘”—_ X length of WOl‘k)-

Expressed in words, this formula reads:
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To find the amount to set over the tailstock for work taper-
ing for its full length, when the diameters at the large and
small ends are known, subtract the small diameter from the
large, and divide the remainder by 2.

When Work is Part Straight and Part Tapered. — If part
of the work is turned straight and part of it turned tapered, as

4"-1%'—--
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Fig. 6. Different Classes of Problems encountered in connection with
Taper Turning

shown at B, Fig. 6, the taper in the whole length of the work

must be determined, and then the tailstock set over one-half

of this amount. The piece shown is 13 inch at the small end

of the taper. It is tapered for 4 inches, and the diameter

at the large end of the taper is 1§ inch. It is then turned
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end. How much should the tailstock be set over for turning
this pin?

The total taper of this pin is found by subtracting the
diameter at the small end, }§ inch, from the diameter at the
large end, 1 inch. This gives a remainder of f4. One-half
of this amount, or 4 inch, represents the amount which the
tailstock should be set over.

Example 3. — The diameter at the large end of the taper
gage shown at E, Fig. 6, is 2} inches, the diameter at the small
end is 1§ inch, the length of the taper, 8 inches and the total
length, 12 inches. How much should the tailstock be set over?

Subtracting the diameter at the small end, 1} inch, from
the diameter at the large end, 2% inches, gives a taper of 4 inch
in 8 inches. Dividing 4 by 8 gives the taper in one inch, which
is {y inch. Multiplying this by the total length of the work,
12 inches, gives § inch, which, divided by 2, gives finally,.
the required amount which the tailstock is to be set over.
This latter is, therefore, set over § inch.
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15—%59 = 250 revolutions per minute.

Diameter of Driven Pulley required. — To find the diameter
of the driven pulley when the diameter and the number of
revolutions per minute of the driving pulley and the number
of revolutions per minute of the driven pulley are known.

Rule: Multiply the diameter of the driving pulley by its
number of revolutions per minute, and divide the product by

the number of revolutions per minute of the driven pulley.
~ Example. — If the diameter of the driving pulley 4, Fig. 1,
is 15 inches, and it makes 120 revolutions per minute, and the
driven pulley B is required to make 200 revolutions per minute,
the diameter of pulley B equals:

Is X 120 g inches.
200

Speed of Driving Pulley required. — To find the number of
revolutions per minute of the driving pulley when the diameter
and the number of revolutions per minute of the driven pulley
and the diameter of the driving pulley are known.

Rule: Multiply the diameter of the driven pulley by its
number of revolutions per minute, and divide the product by
the diameter of the driving pulley.

Example. — If the diameter of the driven pulley B, Fig. 1,
is 9 inches, and it makes 300 revolutions per minute, and the
diameter of the driving pulley 4 is 15 inches, the number of
revolutions per minute of pulley 4 equals:

911533-0 = 180 revolutions per minute.

Diameter of Driving Pulley required. —To find the
diameter of the driving pulley when the diameter and: the
number of revolutions per minute of the driven pulley and
the number of revolutions per minute of the driving pulley
are known.

Rule: Multiply the diameter of the driven pulley by its
number of revolutions per minute, and divide the product
by the number of revolutions per minute of the driving pulley.
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ness of the belt makes an appreciable difference in the ratio
of the pulley speeds. If the driving pulley is, say, 6 inches in
diameter and the driven pulley is 2 inches in diameter, then
the ratio of the driving and driven diameters, not considering
the belt, would be as 6 to 2, or as 3 to 1. Considering the
thickness of the belt, however, to be 1 inch and taking this
thickness into consideration, the ratio would be as 6} to 2%,
or as 2.77 to 1. It will be seen, therefore, that the thickness

i

3
-

]
(=

Fig. 8. Simple and Compound Gear Drives

of the belt makes a difference of about 8 per cent in the speed
of the driven pulley.

Speeds of Gearing. — When gearing is to be employed to
transmit motion and power from one shaft to another, it is
often necessary or desirable that the ratio between the speeds
of the driving and the driven shafts be made to equal some
predetermined ratio. Also when gearing is already installed
and in operation, it is frequently necessary to determine the
exact ratio between the speeds of the driving and the driven
shafts. The following rules and examples are applicable to
such calculations.

Simple Spur Gearing. — A simple spur-gear drive con-
sisting of a driving and a driven gear (such as shown at 4
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thus obtaining a new fraction of the same value, which has a
numerator equivalent to a suitable number of teeth for one
gear and a denominator equivalent to a suitable number of
teeth for the .other gear.

Example. — If the speed ratio between the shafts 4 and B,
Fig. 2, is §, or, as it is commonly expressed, 1 to 4, the number
of teeth in each of two gears to give the required ratio can be
found in. the following manner: Write the ratio as a fraction,
thus, , and multiply both the numerator and the denominator
by some trial number. As the numerator is 1 in this case,
the trial number should be some number not less than 12,
as gears having less than 12 teeth do not operate satisfac-
torily. Taking 14 as a trial number, we have (1 X14) 14

(4 X14) 56
The number of teeth in the gear having the greatest speed
therefore, is 14, and the number of teeth in the other gear
is 56. -

Number of Teeth in Driven Gear required. — If the number
of teeth in the driving gear and the number of revolutions
per minute of both the driving and driven gears are known,
the number of teeth in the driven gear can be found by the
following rule:

Rule: Multiply the number of teeth in the driving gear by
its number of revolutions per minute, and divide the product
by the number of revolutions per minute of the driven gear.

Example. — If the driving gear B has 12 teeth and makes
144 revolutions per minute, and A makes 36 revolutions per
minute, the number of teeth in gear A equals:

I—g—% = 48 teeth.
3

Pitch Diameter of Driven Gear required. — If the pitch
diameters of the gears are substituted in place of the number
of teeth in connection with speed calculations, the same results
will be obtained. If driving gear B has a pitch diameter of
4 inches and it makes 144 revolutions per minute, and A makes
306 revolutions per minute, the pitch diameter of 4 equals:
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Thus, s determining the speed of the driving or the drivea
shafts of 2 bevel-gear drive. or in calcuiating the size of gears
needed to give any required speed ratio. the number of tecth
in 2 bevel gear can be used the same as though it were a spur
gear.

Exemple. — I bevel gear 4 ‘Fig 4} has 20 teeth and makes
80 revolutions per minute and the bevel gear B has 40 teeth,
the number of revolutions per minute of B equals:

”—x—ag-pm'olmi)nsperminute.

The pitch diameters of bevel gears can also be used in calcu-

lating the speeds instead of the number of teeth.

Fig. 4. Train of Bevel and Spur Gearing

Effect of Idler Gears. — When idler gears are used in spur-
gear trains, the speed of the driven shaft is not affected by the
idler gear or gears, but its direction of rotation is changed.
If we assume that E (Fig. 4) is the driving gear and I the
driven gear, the speed or size of either gears E or I can be
calculated without taking into consideration the size of idler
gears F, G, and H, as they have no effect whatever on the
speed ratio between E and I.

Direction of Rotation. — The following rule can be used to ,
“stermine the direction in which a driven shaft will be rotated
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is 5.5:4 =x:1773, or 5—5%113 = 2438 revolutions per

minute, approximately. To obtain the same peripheral speed
as when the belt is on the large pulley, the diameters of the
-grinding wheel should be 14:x = 2438:1773, or IJ—::—;}Z&
= 10.18 inches. Therefore, when the grinding wheel has
been worn down to a diameter of 10.18 inches, or approxi-
mately 10y% inches, the spindle belt should be shifted to the
smaller step of the spindle pulley to obtain a peripheral speed
of 6500 feet per minute. The method used in this example
may be reduced to a formula for use with any make of grind-
ing machine having a two-step spindle pulley.

Let D = diameter of wheel, full size;
D’ = diameter of wheel, reduced size;
d = diameter of large pulley step;
d' = diameter of small pulley step;
V = revolutions per minute of spindle, using large pul-

ley step;
v= revolutions per minute of spindle, using small pul-
ley step.
av DV

Then =v;and — =
v

dl
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When drilling a hole in the drill press, the cutting speed is
the number of feet that the outer corners of the cutting edges
travel in one minute.

Speed of Work for Given Diameter and Cutting Speed. —
The problems in regard to cutting speeds in the lathe or turn-
ing and boring mill may be divided into two groups. The
first problems to be considered are for determining the speed
of the work in revolutions per minute when the diameter of
the work turned in a lathe or boring mill and the required
cutting speed are known.

Assume that the diameter D, Fig. 1, of the work is 5 inches,
and the required cutting speed, 40 feet per minute. When the

I EBIAII:'!I! AFTER

CUT 18 TAKEN

LI

O =

DURLNEN

Fig. 1. Turning Tool and Work Fig. 8. Boring Tool and Work

diameter of the work is known, its circumference equals the
diameter times 3.1416. Therefore, the circumference of the
work in this case is § X 3.1416 = 15.708 inches. For calcu-
lations of this kind, it will be near enough to say that the
circumference is 15.7 inches. For each revolution of the
work, the length of its circumference passes the tool point
once; thus for each revolution a length of 15.7 inches passes
the tool. As the cutting speed is expressed in feet, the length
15.7 inches should also be expressed in feet, which is done by
dividing by 12, thus obtaining 15.7 + 12 = 1.308 foot, as the
circumference of the work. The next question is, how many
revolutions, each equivalent to 1.308 foot, does it require to
obtain a cutting speed of 40 feet? This is obtained by finding
how many times 1.308 is contained in 40, or, in other words,
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volves 382 revolutions per minute. To find the cutting speed,
the circumference of the work is first figured and changed
into feet. The circumference in inchesis 1 X 3.1416 = 3.1416,
and 3.1416 + 12 = 0.262, the circumference in feet, or the
distance passed over by the tool point for each revolution.
During 382 revolutions, the distance passed over is 382 X 0.262
= 100 feet, which is thus the cutting speed per minute.

2222

Pig. 3. Twist Drill Fig. 4. Milling Cutter

This calculation is expressed by the formula:

Cuttingspeedin _ diam.of work ininches X 3.1416 X revolutions
feet per minute 12 per minute.

Using the same letters to denote the quantities in this
formula as before, the formula may be written:

c=DX3uiby y )

If, in this formula, D = diameter of work or diameter of
bored or drilled hole in inches, the formula can be used for
cutting speeds of drills and boring tools also.

(If the cut taken on a piece being turned is deep in pro-

portion to the diameter of the work, it is preferable, in cal-
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3.1416 and divide the result by 12. Then divide the given
cutting speed by the quotient thus obtained.

Rule 2: To find the cutting speed in feet per minute when
the diameter of the work to be turned, the hole drilled or
bored, or the milling cutter used is given in inches, and the
number of revolutions per minute are known, multiply the
diameter by 3.1416 and divide the result by 12. Then mul-
tiply the quotient thus obtained by the number of revolutions
per minute. '

Feed of Cutting Tools. — The feed of a lathe tool is its
sidewise motion (traverse) for each revolution of the work:
thus, if the feed is g inch, it means that for each revolution
of the work the lathe carriage and tool move 4y inch along
the lathe bed, thus cutting a chip ¢ inch wide.

The feed of a drill in the drill press is the downward motion
of the drill per revolution. The feed of a milling cutter is the
forward movement of the milling machine table for each revo-
lution of the cutter.

Sometimes the feed is expressed as the distance which the
drill or the milling machine table move forward in one min-
ute. In order to avoid confusion, it is, therefore, always best
to state plainly in each case whether feed per revolution or
feed per minute is meant.

Time required for Turning Work in the Lathe. — The
most common calculation in which the feed of a lathe tool
enters is the time required for turning or boring a given piece
of work, when the feed, cutting speed, and the diameter of
work (or the number of revolutions per minute) are known.

Example. — Assume that a tool-steel arbor, 2 inches in
diameter, is to be turned. The length to be turned on the
arbor (the length of cut) is 10 inches. The cutting speed is
25 feet per minute and the feed or traverse of the cutting tool .
is g% inch per revolution. How long a time would it require
to take one cut over the surface of the work?

First find the number of revolutions per minute of the work:

_ ____25 —_25 _
(2 X 3.1416) + 12 o©0.524 47-7-
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Example. — Assume that a 1§-inch drill makes 8o revolu-
tions per minute and that the feed per revolution is o0.008
inch. How long a time would be required to drill a hole s}
inches deep?

To find the number of revolutions required to drill the full
depth of the hole, divide 5} by 0.008, obtaining the quotient
687.5, or, approximately, 6go revolutions. As the drill makes
8o revolutions in one minute, find the total number of minutes
required by dividing 6go by 8o, the quotient 8.6 being the
number of minutes required to drill a hole 5} inches deep
under the given conditions. If, in the foregoing,

T = time required for drilling, in minutes,
L = depth of drilled hole, in inches,
N = number of revolutions per minute of the drill,
F = feed per revolution, in inches
then: L
T=¥xF

It will be seen that this formula is of the sarfie form as the
one for finding the time for turning or boring work in the
lathe.

If the cutting speed of the drill and its diameter be given
instead of the number of revolutions, find the number of
revolutions before applying the formula above. If the feed
per minute be given, the feed per revolution can be found by
dividing the feed per minute by the number of revolutions
per minute.

Time required for Milling. — The time required for milling
may be found if the number of revolutions per minute of the
cutter, and the feed per revolution (or the cutting speed,
the diameter of the cutter and the feed per revolution) are
known. If the feed per minute is given, the feed per revolution
can be found by dividing the feed per minute by the number
of revolutions per minute.

Example. — If the length of the cut taken in a milling
machine is 8§ inches and the feed is ¢ inch per revolution,
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width of the work is 22 inches. Find the time required for
planing the work.

As the planer makes 6 strokes per minute and the feed per
stroke is g% inch, the feed per minute is 6 X ¥, or & inch.
The tool must traverse 22 inches to plane the complete work;
the traverse in one minute being % inch, the total number of
minutes required to traverse the work is found by dividing

22 by .

+9 22,16 _352_ I
22 6 1 X ° 9 399 minutes.
The time required for planing the work is thus 40 minutes,
approximately.

This calculation may be summed up in the following formula,
applicable to any case where the feed per stroke, the number
of strokes per minute, and the width of the work are known:

W .
FXN

T =
In this formula,
T = time required for planing, in minutes;
W = width of work, in inches;
F = feed per stroke, in inches;
N = number of cutting strokes per minute.

The formula expressed as a rule would be as follows:

Rule: To find the time required for planing when the width
of the work, the feed per stroke, and the number of cutting
strokes per minute are known, divide the width of the work
by the feed times the number of cutting strokes per minute.

To Calculate Cutting Speed and Return Speed. — The speed
at which the platen returns when the cutting stroke is com-
pleted is usually two or more times the cutting speed. If the
return speed is twice as fast as the cutting speed, we say that
the ratio of return speed to cutting speed is 2 to 1. If the
return speed is three times as fast as the cutting speed, we
say that the ratio between the speeds is 3 to 1, and so on.
Ordinarily, these ratios are designated “2,” “3,”” etc. If the
return speed is 100 feet and the cutting speed 50 feet per
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CHAPTER IX

CHANGE-GEARING FOR THREAD CUTTING AND
SPIRAL MILLING

WHILE lathe operators ordinarily are not required to calcu-
late the combinations of gearing to use for cutting screw
threads of different pitch, the method of determining the
right combination to use should be understood. The number
of times that the spindle will revolve while the carriage moves
one inch along the lathe bed is determined by the ratio of the
change-gears. By employing different ratios of change-
gearing, therefore, different numbers of threads per inch can
be cut.

The change-gearing may be either simple or compound.
Simple gearing is shown at A, Fig. 1. When simple gearing
is used it is always necessary to use an idler between the gear
on the spindle stud and the gear on the lead-screw. This
idler has no influence on the ratio of the gearing, and can
have any number of teeth. Compound change-gearing is
shown at B.

Finding the Lathe Screw Constant. —In order to be able
to calculate change-gears for the lathe, it is necessary first
to find the ‘‘lathe screw constant.” This constant is always
the same for each particular lathe, but it may be different
for lathes of different sizes or makes.

Rule: To find the screw constant of a lathe, place gears
with an equal number of teeth on the spindle stud and the
lead-screw. Then cut a thread on a piece of work in the lathe.
The number of threads per inch that will be cut on the work
when gears with equal numbers of teeth are placed as directed
is called the “screw constant” of the lathe.

For example, put gears with 48 teeth on the spindle stud

and on the lead-screw, and any convenient gear on the inter-
118
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4 up to 100. By substituting the figures given, in the formula
above, and carrying out the calculation:

6 _6X4 24
10 10X4 - 40
By multiplying both the numerator and the denominator
by 4, two available gears with 24 and 40 teeth, respectively,
are obtained. The 24-tooth gear goes on the spindle stud,
and the g4o-tooth gear, on the lead-screw. It will be seen
that if 6 and 1o had been multiplied by 5, the result would
have been 30 and 50 teeth, which gears are not available in
the set of gears with this lathe.
Assume that it is required to cut 11} threads per inch in
the same lathe having the same set of change-gears. Then,

6 6X8 _ 48

113 11} X 8 —-9_2"

It will be found that multiplying by any other number
than 8 would not, in this case, give numbers of teeth that could
be found in the gears with the lathe. The lathe screw con-
stant differs for different makes and sizes of lathes, and should
be determined for each particular lathe.

Compound Gearing. — Sometimes it is not possible to
obtain gears that will give the required ratio for the thread
to be cut in a simple train, and then compound gearing must
be employed. The method for finding the number of teeth
in the gears in compound gearing is exactly the same as for
simple gearing, except that we divide both the numerator
and the denominator of the fraction, giving the ratio of screw
constant to threads per inch to be cut, into two factors, and
then multiply each “pair’ of factors by the same number,
in order to obtain the change-gears. (One factor in the
numerator and one in the denominator make one pair.)

Assume that the lathe screw constant is 6, that the numbers
of teeth in the available gears are 30, 35, 40, 45, 50, 55, etc.,
increasing by 5 up to 100. Assume that it is required to

cut 24 threads per inch. Then, % = ratio
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in the driving gear (or by the product of the numbers of teeth
in the two driving gears of a compound train). The quotient
equals the number of threads per inch obtained with that
combination of gearing. ,
Example. — When the driving gears in a compound train
have 40 and 30 teeth, respectively, and the driven gears 8o
and 6o teeth, how many threads per inch will be cut on a
lathe equipped with this gearing, if the lathe screw constant
is 62 ‘
. .1 _ constant X No. of teeth in driven gears:
Threads per inch = number of teeth in driving gears

Therefore, in this example,
6 X 80 X 60 _

Thread inch =
reads per inc 40 X 30

24.

. Example. — When the driving gear or the ‘“‘gear on the
stud” has 48 teeth, and the driven gear or the ‘‘gear on the
lead-screw,” g2 teeth, how many threads per inch will be
cut, if the lathe screw constant is 6?

Threads per inch = 9%9—2 = 11}.
4

Change-gears for Cutting Metric Threads. — The metric
system of length measurement is in use in practically all
countries except in the United States, Great Britain, and the
British colonies. The unit of length in the metric system is
the meter, which equals nearly 39.37 inches (or practically
393 inches). :

In medium and small machine design the unit employed
is almost always the millimeter. One millimeter equals

0.03937 inch; one inch equals , or 25.4 millimeters,

©0.03937
almost exactly.

When screws are made in accordance with the metric sys-
tem it is not the usual practice to give the number of threads
per millimeter or centimeter in the same way as the number
of threads per inch is given in the English system. Instead,
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The fraction —;—3 is the ratio of the change-gearing re-

quired, and all that has to be done now is to multiply the
numerator and the denominator of this fraction by the same
number until suitable numbers of teeth for the change-gears
are found. By trial it is found that the first whole number by
which 25.4 can be multiplied so as to obtain a whole number
as a result, is 5. Multiplying 25.4 by 5 gives 127. Thus
there must be one gear with 127 teeth whenever a metric
thread is cut by means of an English lead-screw. The other
gear required in this case has go teeth, because 5§ X 6 X 3 = go
The calculation would be carried out as shown below:

6X3Xs5_18X5_ 90,
25.4 X § 127 127

What has just been said can be expressed as follows:

Rule: To find the change-gears for cutting metric pitches
with an English lead-screw, place the lathe screw constant
multiplied by the number of millimeters lead of the thread to
be cut multiplied by 5, in the numerator of the fraction, and
127 as the denominator. The product of the numbers in the
numerator give the number of teeth in the gear on the spindle
stud, and 127 is the number of teeth in the gear on the lead-
screw. Written as a formula, this rule would be:

Lathe screw _, lead of thread to be x teeth in spindle stud
constant cut, in millimeters 5 - gear
127 teeth in lead-screw gear

As an example, assume that a screw with 2.5 millimeters
lead is to be cut on a lathe having a screw constant of 8. By
placing the given figures in the formula:

8 X 2.5 X § _ 100....spindle stud gear
127 127....lead-screw gear

Continued Fractions applied to Change-gear Calculations. —
Continued fractions are sometimes employed to obtain a
fraction which is small and convenient to use and which has
very nearly the same value as a larger and more cumber-
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1 = X 6 x ]
Threads per inch ‘-"——1—531 6 X 71 14.183.

Change-gears for Cutting a Worm Thread. — To further
illustrate the use of continued fractions, assume that a single-
threaded worm is to mesh with a worm-gear of 0.7854 inch
circular pitch. What change-gears should be used when
cutting the worm thread if the lead-screw has a lathe screw
constant of 47

The linear pitch of the worm is equal to the circular pitch
of the worm-gear, or 0.7854 inch. Therefore, the worm has
I + 0.7854 = 1.273 threads per inch. The decimal o0.273 is
next converted into a continued fraction. Thus, o0.273 or
213 I I I I etc. The convergents corresponding
1000 3+1+4+141
to these continued fractions are §, %, #, &, etc. If the third
convergent is used, the pitch will be equivalent to;l—;- =1

9
= 0.7777+, which is within o.0077 of the required pitch
(0.7854 — 0.7777 = 0.0077).

If the fourth convergent is used, Lﬁ = i—: = 0.7857, which

I

is within 0.0003 of the required pitch. Since the lathe screw
constant is 4, the ratio of the change-gears is represented by
4 44 8—8 Therefore, the driving gear or the gear on
1$r 14 28
the stud must have 88 teeth and the driven gear or the one
on the lead-screw, 28 teeth. If a compound train of gears
were used instead, the driving gears would have 6o and 66
teeth, respectively, and the driven gears, 30 and 42 teeth,
respectively. Thus,

44 _4 X 11 _ 60 X 66
14 2X 7 30 X 42

Verifying the accuracy of the foregoing calculations:

Threads per inch = 5—?;3;%43 = 1.273, nearly.
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Therefore, gears having 30 and 25 teeth can be used as the
two driven gears when gears of 6o and 100 teeth are used as
drivers, or any other combinations may be used.

Example. — Assume that a spiral groove is to be milled
having a lead of 2.22 inches, and that the lead of the machine
is 10. Find the gears that may be used.

By applying the method previously referred to, we have

222 _ 6 X37 _36X 37 _24X 37 _24X 74
1000 10 X100 60X 100 40 X 100 80 X 100

There are also several other. combinations which might be
used to obtain a lead of 2.22 inches, the numbers above the
line representing the driven gears and those below the line,
the driving gears. If the lead should be given in thousandths,
both terms may be multiplied by 1000, or the required lead
may be written down as a whole number, as many ciphers
being annexed to the 10 in the denominator as there are decimal
places in the required lead. For instance, if the lead is 2.176

inches, the ratio of the gears is 2176
10,000

)
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The sides and angles of any triangle, which are not known,
can be found when (1) all three sides, (2) two sides and one
angle, or (3) one side and two angles are given. In other
words, if the triangle is considered as consisting of six parts,
three angles, and three sides, the unknown parts can be de-
termined when any three of the parts are given, provided at
least one of the given parts is a side.

_In order to introduce the values of the angles in calculations
of triangles, use is made of certain expressions called #rigo-
nomeirical funclions or functions of angles. The names of

' N N
- S
AN

_ﬁ‘

L J

Fig. 4. Right-angled Triangle

these expressions are: sine, cosine, tangent, cotangent, secant,
and cosecant, and they are usually abbreviated as follows:

sin = sine, cot = cotangent,
cos = cosine, sec = secant,
tan = tangent, cosec = cosecant.

In Fig. 4 is shown a right-angled triangle. The lengths of
the three sides are represented by a, b, and ¢, respectively,
and the angles opposite each of these sides are marked A4,
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tB=¢.
co 5
If b = 28, and ¢ = 25, then cot B = g— = 0.89286.

The secant of an angle equals the hypotenuse divided b'y
the adjacent side.' The secant of angle B thus equals the
hypotenuse a divided by the side ¢ adjacent to the angle, or:

a
sec B ==
c

If a = 24,and ¢ = 15, then sec B = %;— = 1.6.

The cosecant of an angle equals the hypotenuse divided by
the opposite side. The cosecant of angle B thus equals the
hypotenuse a divided by the side b opposite the angle, or:

B =2.
cosec b
If a = 16, and b = ¢, then cosec B = 19—6 = 1.77778.

The rules given above are easily memorized, and the student
should go no further before he can see at a glance the various
functions in a given right-angled triangle.

If the functions of the angle C were to be found instead of
the functions of angle B, as given above, they would be as
follows:

sin C = cos C = tan C =

cot C = sec C = cosec C = =

> Qo
a8 SIie

SIS Qla

It must be remembered that the functions of the angles
can be found in this manner only when the triangle is right-
angled. If the triangle has the shape shown by the full lines
in Fig. s, the sine of angle D, for instance, cannot be expressed
by any relation between two sides of this triangle. The sine
of angle D, however, can be found by constructing a right-
angled triangle by extending the side e to the point P, from
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secB=-§—=1.667 ' cosecB=-i—=1.2g
The functions for angle C are as follows:
sinC=-3—=o.6 cosC=-§—=o.8
tan C = i-o75 cotC=—';-=1.333
sec C = —5— = I1.2§ cosec C =3 = 1.667
4 3
N

< ' ¢ g

Fig. 6. Right-angled Triangle having a 4-inch Base, 3-inch Altitude, and
B-inch Hypotenuse

The secant and cosecant, being merely the values of 1
divided by the cosine and sine, are not often used in calcula-
tions, or included in tables of angular functions.

By studying the results obtained in the calculations above
it will be noted that in a right-angled triangle there is a definite
relation between the functions of the two acute angles. The
sine of angle B equals the cosine of angle C; the tangent of
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The numerical values for the natural or trigonometric func-
tions, which must be known before a formula containing an
expression with a trigonometric function can be calculated,
are given in tables which are found in engineering handbooks.
These tables are not all arranged in exactly the same way
and some are more complete than others. The accompanying
tables give the values of the sines, cosines, tangents, and
cotangents for all degrees and for every 10 minutes or one-
sixth of a degree. The tables in MACHINERY'S HANDBOOK
give the values for all degrees and minutes and they include
values for all of the functions. The accompanying tables,
however, will serve to illustrate how tables of functions are
used and they are complete enough for many practical prob-
lems. By means of such tables, when the angle is given, the
angular function can be found, and when the function is
given, the angle can be determined.

At the top of Tables 1 and 2, the heading reads “Table of
Sines,” and at the bottom is the legend ‘“‘Table of Cosines.”
At the top of Tables 3 and 4, the heading reads ‘“Table of
Tangents,” and at the bottom is the legend ‘‘Table of Co-
tangents.” At the top of all the tables, the heading of the
extreme left-hand: column reads ‘“Deg.,” and the following
columns are headed o', 10/, 20/, etc. At the bottom of the
tables the same legends are placed under the columns, but
reading from right to left.

When the sine or tangent of a given angle is to be found,
first find the number of degrees in the extreme left-hand
column in the respective tables, and then locate the number
of minutes at the top of the table. Then follow the column,
over which the number of minutes is given, downward until
arriving at the figure in line with the given number of degrees.
This figure is the numerical value of the sine or tangent for
the given angle. If the angle is given in even degrees with
no minutes, the corresponding function will be found opposite
the number of degrees in the column marked o’ at the top.

The cosines and cotangents of angles are found in the same
tables as the sines and tangents, but the tables in this case
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.01745
.03489
.05233

.08715
.10452
.12186
.13917
.15643
.17364
. 19080
.20791
+22495
.24192
.25881

.27563
.20237
. 30901
.32556
.34202
.35836
.37460
39073
.40673
.42201
-43837
-45399

.48481
. 50000
.51504
.52091
-54463
-55919
.57358
.58778
.60181
.61566
.62932
.64279
.65605
.66913
.68199
.69465

60'

.00291
.02036
.03780
-05524
.07265

.10742
-1247§
. 14205
-15930
.17651
.19366
.2107§
.22778
24474
.20162
.27843
+29515
.31178
.32831
- 34475
.36108
-37730
-39340
40939
.42525

.45058
47203
-48735
.50251
.51752
.53238
-54707
.56160
-57595
-59013
.60413
.61795
.63157
.64501
.65825
.67128
.68412
69674

S0

SHOP MATHEMATICS

1. TABLE OF SINES
Read degrees in left-hand column and minutes at top

Example: sin 7° 10’ = .12475

2ol

.co581
.02326
.04071
.05814
07555
.09295
.11031
.12764
-14493
.16217
.17937
. 19651
.21359
.23001
.24756
.26443
.28122
+29793
.31454
.33100
.34748
.36379
-37999
- 39607
.41204
.42788
-44359
.45916
-47460
-48989
.50503
. 52001
.53484
.54950
. 56400
.57833
.59248

.62023
.63383
.64723
.66043
67344
.68624
.69883

/

40

’

30

.00872
.02617
.04361
.06104
07845
.09584
.11320
.13052
.14780
.16504
.18223
.19936
.21644
<23344
.25038
.26723
.28401
. 30070
.31730
-33380
.35021
.36650
.38268
-30874
-41469
.43051
.44619
.46174
47715
.49242
50753
-52249
-53730
-55193
. 56640
.58070
.50482
.60876
.62251
.63607
-64944
.66262
67559
.68835
. 70090

’

30

’

40

TABLE OF COSINES
Read degrees in right-hand column and minutes at bottom

Example: cos §6° 20’ = .55436

’

50

-01454
.03199
-04943
.006685
.08425
.10163
.11898
.13629
.15356
.17078
-18795
. 20500
.22211
23909
. 25600
.27284
.28958
.30624
.32281
.33928
.35565
37190
. 38805
.40407
.41998
-43575
-45139

.48226
49747
51254
52745
-54219
.55677
57119
.58542

:61336
.62705
-64055
.65386

:67986
.69256
.70504
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3. TABLE OF TANGENTS
Read degrees in left-hand column and minutes at top
Example: tan 7° 10’ = 12573 .

Deg. o’ 10’ 20’ 30’ 40’ so’ 60’
o | .00000 | .00200 | .00581 | .00872 ' .01163 | .01454 | .01745 || 89
1 .o1745 | .02036 | .02327 | .02618 | .02009 | .03200 | .03492 || 88
2 .03402 | .03783 | .04074 | .04366 .04057 | .04949 | .05240 | 87
3 05240 | .o5532 ' .o5824 ' .06116 .06408 | .06700 | .06992 || 86 -
4 || 06002 | 07285 - .o7577 .07870 .08102 | .08455 | .08748 || 85
5 o8748 | .09042 ' .00335 .00028 .09922 10216 | .10510 § 84
0 .10§10 | .10804 . .11000 .II303 .11688 11983 | .12278 | 83
7 12278 | (12573, 12809 .13105  .13401 13757 | -14054 | 82
8 | 14054 | 14350 14647 14045 . .15242 | .15540 | .15838 | 81
Q L15838 | L1036 | 16435 (10734 .17033 17332 | .17632 || 8o
10 f 17032 | 17032 - .18233 18533 .18334 . .10136 | .19438 | 79
11 10438 | .10740 20042 .20345 | .20048 | .20951 | .2125§ 78
12 | .21255 | .21550 , 21804 . 22160 .22474 ' .22780 | .23086 || 77
13 | 2308 [ 23303 ' .23700 | .24007  .24315 .24624 | .24932 | 76
14 J -24032 | 25242 25551 23801 | .20172 26483 | .26794 § 75
15 | 20704 | .a7100 27410 27732 | 280360 . .28360 | .28674 §| 74
10 28074 | .28%080  .20308  .20021 | .20038  .30255 | .30573 f°* 73
17 30573 | .30%1  .31210  .31520 .31850 ! .32170 . .32492 | 72
RO gag0r | 3eSiy 33130 33450 33783 | 34107 | 34432 F 71
10 34432 | (34758 35084 35411, .35730 [ .30067 : .36397 | 70
20 | 30307 | .a0720 37057 37388 © 37720 | .38053 | .38386 | 69
at | .a8380 1 38720 .30055  .30301 . .30727 | .40004 | .40402 || 68
22 40402 .40741 41080  .qr421 41702 | (42104 | 42447 | 67
23 42447 42701 43135 43481 43827 1 44174, 44522 66
X! 44522 44871 43221 45572 L4302 460277 46630 Il 65
235l a00go 40083 47341 47007 4Boss 48413 | 48773 | O4
20 48773 - 40133 40405 40838 zorzr 50586 | 50952 | 63
7 L§0032 51310 S1O8T 520506 .52427 ' .52798  .s53170 [ 62
8 .S3170 . 53544 53010 54203 34072 .55051  .55430 || Or1
20 || .55430 | 53811 .sbrag 30577 50001 | 57347 .57735 f 60
30 L§7735 | .s8123 58513 .58004 . 50207 50600 ' .60086 59
3t .00080 | 60482 00880  .01280 .01080 I 62083 .62486 | 58
32 L02480 | 62802  .063208 63707 .041160 . .64528 .64940 § 57
33 .04040 | 65353 05771 .60INR 60607 . 67028 .67450 || 56
34 07450 | L0787y 083~ 68728 60157 60588 .70020 § 355
33 . 70020 | . 70455 solo1 . T1320 71700 72210 .72034 54
30§ 73054 | 73000 T340 .T3000 74447 | 74000 75355 ) 53
37 f 75355 ¢ s jor7r jo73r 77103 | 77061 731284 52
38 L78128 | .78308  .7oo0Q 70343 .Boo1o | .80497 82078 | 51
30 80078 | 81401 .S1o40 82433  .S2:23 0 83415 .83010 | 350
40 || .83010 | .84400 83000 85408 . 85012 I So419 .86923 | 49
41 .86028 | 87440 .87035 83472 .83002 %0515 .9oo40 j| 43
2 .goo4o | o508 .Q10Q0 .Q1633 .Q210Q0 | .92700 .03251 47
43 || 03231 03700 04345 04300  .95450 ~ .gboo¥  .96568 | 10
44 [ covso8 07132 97000 | 98200  .08343 | -99419 1.00000 § 45

|
—f - . _
6o’ ’ 50’ l 40’ 30 20’ | 10’ o’ Deg

TABLE OF COTANGENTS

Read degrees in right-hand column and minutes at bottom
Example: cot 56° 20 = bobor




Digitized by GOOS[Q



152 SHOP MATHEMATICS

Example 8. — Cot b equals o0.77195. Find b. — The co-
tangents are read from the bottom in Tables 3 and 4. The
value 0.77195 is located opposite 52 in the right-hand column
and in the column marked 20’ at the bottom. Angle b, then,
is 52° 20,

Example 9. — Sin b equals o.31190. Find b. — It will be
found that the value 0.31190 is not given in the table of sines;
the nearest value in the table is 0.31178. For shop calcula-
tions, it is near enough to consider the angle b equal to the
angle corresponding to this latter value; the angle, then,
is 18° 10'.

Functions of Angles Greater than 9o Degrees. — The ac-
companying tables give the angular functions only for angles
up to go degrees (or 89 degrees 6o minutes, which, of course,
equals go degrees). In obtuse triangles, one angle, however, is
greater than go degrees, and the tables can be used for finding
the functions for angles larger than go degrees also.

The sine of an angle greater than go degrees but less than
180 degrees equals the sine of an angle which is the difference
between 180 degrees and the given angle.

Example: Sin 118° = sin (180° — 118°) = sin 62°. In the
same way, sin 150° 40’ = sin (180° — 150° 40") = sin 29° 20'.

The cosine, tangent, and cotangent for an angle greater
than go but less than 180 degrees equals, respectively, the
cosine, tangent, and cotangent of the difference between 180
degrees and the given angle, but, in this case, the angular
function found has a negative value, preceded by a minus sign.
(See “Positive and Negative Quantities,” Chapter II.)

Example 1. — Find tan 150°.

Tan 150° = —tan (180° — 150°) = —tan 30°. From the
tables we have tan 30° = 0.57735; thus tan 150° = —o0.5773s.

Example 2. — Find sin 155° 50’.

As previously explained, sin 155° 50’ = sin (180° — 155° 50")
= sin 24° 10’ = 0.40939.

Example 3. — Find tan 123° 20'.

Tan 123° 20" = —tan (180° — 123° 20') = —tan §6° 40
= —1.5204.
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and obtaining the angles, expressed in degrees and minutes,
from the trigonometric tables. When one angle has been
found, the other can be found directly without reference to
the tables, because the sum of the acute angles in a right-
angled triangle equals go degrees, and if one of them is known,
the other must equal go degrees minus the known angle.
Expressed as formulas these would be:

B =9g°—-C; °’ C = go° — B.
Example 1. — Assume that the hypotenuse a (Fig. 1) of a

right-angled triangle is 5 inches and side b is 4 inches. Find
angles B and C and the length of side c.

T
|

Fig. 2. When the Base b and the Altitude ¢ are (fiven, to Find the Hypotenuse
of a and Angles B and C

The side ¢ is first found by Formula (3), @ and b being inserted
in this formula as below:

c=VsT— 4 =V25—16=Vg=3.

The side opposite an angle divided by the hypotenuse gives
the sine of the angle.

sin C =3 = 0.6.
5

By referring to the trigonometric tables, it will be found that
the nearest value to 0.6 in the columns of sines is 0.59948, and
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¢ = a X cos B; b = a X sin B; C = go° — B.
. If C is the known angle, then:
b=aXcosC; ¢ =a XsinC; B = go°® - C.

Example. — Assume that the hypotenuse a = 22 inches, and
angle B = 41 degrees 40 minutes. Find sides 4 and ¢ and
angle C. A

c=aXcos B=22Xcos 41° 40’ =22X0.74702 =16.434 inches.
b=aXsin B=22Xsin 41° 40’ =22X0.66479 =14.625 inches.
C=090°—41° 40’ =48° 20’

Case 3. — When one acute angle and its adjacent side are
known, the hypotenuse is found by dividing the adjacent side
by the cosine of the known angle; the side opposite the known
angle is found by multiplying the known adjacent side by
the tangent of the known angle; and the other acute angle is
found by subtracting the known angle from go degrees.

Referring to Fig. 1, this rule can be expressed by simple
formulas. If B is the known angle, and ¢ the known side
adjacent to angle B, then:

[4 o
a—m, = ¢ X tan B; C = g9o° — B.
If C is the known angle, and b the known side, adjacent to

angle C, then:
a = b .
cos C’-
Case 4. — When one acute angle and the side opposite it
are known, the hypotenuse is found by dividing the known
side by the sine of the known angle; the side adjacent to
the known angle is found by multiplying the known opposite
side by the cotangent of the known angle; and the other
acute angle is found by subtracting the known angle from
go degrees.
If B is the known angle (see Fig. 1), and b the side opposite,
which is also known, then:

¢ =bXtanC; B = go°® - C.

¢ =b X cot B; C = go° — B.

a = - )
sin B
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In the U. S. standard thread system there is a flat at the
top and bottom of the thread as shown. The width of this.
flat is one-eighth of the pitch, as indicated. Hence, side AB
of the right-angled triangle 4 BC equals one-half of § pitch

minus one-half of § pitch, or (-i% - -11_6) pitch = § pitch. The

angle opposite this side is also known; it is one-half of the
total thread angle, or 30 degrees. According to the rules

and formulas
BC = AB X cot 30°

N N .
,/"/,A%«“}s“‘\.
~/
e G |

S

— -

—¥

—

X N/
B

g

Fig. 4. Master Jig-plate

By inserting in this formula BC = d, AB = §'p, and cot 30°
= 1.7320, we have:
d =3 p X 1.7320 = 0.6495 P,
in which d = depth of thread; p = pitch of thread.
We will now find the depth of the thread for 12 and 16
I

No. of threads per inch’
inserting the known values in the general formula just found:

threads perinch. As p = we have, by

d = 0.6495 X I—I; = 0.0541 inch, for 12 threads;

d = 0.6495 X 1L6 = 0.0406 inch, for 16 threads.
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By referring to Fig. 4 it will be seen that FE = ¢; EH = d;
23 — FG = a; and FG + GH = b. Hence,

a = 2.5 — 1.4684 = 1.0316 inch;

b = 1.4684 + 2.0856 = 3.5540 inches;
¢ = 2.2845 inches;

d = 2.7225 inches.

Example 3. — If the pitch p of a roller chain is § inch, and
the sprocket wheel is to have 32 teeth, what will be the pitch
diameter of the gear? (See Fig. 5.)

By referring to the engraving, it will be seenthat AD = p = §
inch, and AC = 4 AD = { inch, in this case. Line 4B is the

Fig. 6. Diagram of Flat-sided Taper Reamer

pitch radius or one-half the pitch diameter. Angle a is the
angle for one tooth, and as the whole circle is 360 degrees, a in

this case equals 3:70 = 11} degrees, or 11 degrees 15 minutes.

One-half of g, then, equals 5 degrees 37 minutes, approximately.
We, therefore, have a right-angled triangle in which the length
of side AC and the angle opposite to it are known, and it is
necessary to find the hypotenuse A4 B.

AB = AC _ _0'335 ;= 0375 = 3.832 inches.
sin & sin 5° 37" 0.09787
2

The pitch diameter, then, equals 2 X 3.832 = 7.664 inches.
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If ;I—; is inserted in the formula above, we have:

Tan a, =£><cos3§-°-

24 2N
Assume that the taper per foot is 1 inch, and that a four-
sided reamer is required. Find the angle to which to set the

index-head. 1
Tan a, = -29; X cos 45° = 0.00736,

which gives a; = 25 minutes.

Example 5. — In Fig. 7 are shown two pulleys of 6 and 12
inches diameter, with a fixed center distance of 5 feet. Find
the length of belt required to pass over the two pulleys. The
belt is assumed to be perfectly tight.

The length of the belt is made up of the two straight por-
tions AC and BD, tangent to the circles as shown, and of
the arc AEB of the larger pulley and the arc CFD of the
smaller pulley. AC and BD are equal. First find the length
AC. By drawing a line HG from H, the center of the smaller
pulley, parallel to AC, we can construct a triangle HGK in
which HG = AC, and GK = AK — HC. That HG = AC is
clear from the fact that HC and KA are parallel, both being
perpendicular or at right angles to the tangent line AC. The
figure HGAC is, therefore, a rectangle, and hence, opposite
sides are equal. Therefore, HG equals AC, and HC = GA.

That GK = AK — HC 1is evident from the fact that
GK = AK — GA, but as GA = HC, it follows that GK
= AK — HC.

Now, AK is the radius of the larger pulley, which is one-
half its diameter, or 6 inches, and HC is the radius of the
smaller pulley or 3 inches. Hence, GK = 6 — 3 = 3 inches.
HK = 5 feet or 6o inches, as given in the problem. Then
this is a right-angled triangle in which the hypotenuse HK = 60
inches, and one of the sides forming the right angle is 3 inches.
Hence, side GH is found by a previous formula given for thxs
case, and by inserting the known values it reads:

GH = V60* — 3% = V3600 — 9 = V3501 = 50.925.
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44 of a degree, this, changed to a decimal fraction, equals
44 = 0.73, and 185° 44’ equals 185.73 degrees. Then:

Arc AEB = 17-—6993%#5;13: 19.45 inches.
Now, to find arc CFD, angle CHF is first determined. This
angle equals angle GKH or a, because AK and CH are parallel
lines. Hence, arc CFD =
F 2 Xanglea =2X87°8 =
174° 16’. Now, proceeding

PLAN
as before:

3.1416 X 6 = 18.8496 =
circumference of small pulley.
18.8496 _ _ 360°
I . arc CFD  174° 16’
I / Transposing this and

ELEVATION changing 16 minutes to deci-
/ mals of a degree:
Arc CFD =
a 18.8496 X 174.27
360
The total length of the
belt, then, equals:

Fig. 8. Di il ing Soluti f . . . =
e Donb.lgr ;.:n Compo“su:nnggAngl‘e‘i on o 119 85 + 19 ?5 + 9-12
148.42 inches.

= g.12 in.

J 8

Double or Compound Angles,— Many men in the shop
and tool-room are familiar with the formulas employed in
solving problems in which right-angled triangles are involved,
and a great many can also work out problems requiring the
solution of oblique-angled triangles, but the method of solving
double or compound angles is not so well known. The follow-
ing, however, is a very simple method: Suppose that a 45-
degree angle on elevation CAB (see Fig. 8) is to be swung
30 degrees in a horizontal plane about point A. The plan
view of this angle before being swung around would be a
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CHAPTER XII
SOLUTION OF OBLIQUE-ANGLED TRIANGLES

THE methods used in the solution of oblique triangles —
that is, triangles in which none of the angles is a right angle
— differ according to which parts are known and which are
to be found. The problems which present themselves may
be divided into four classes:

1. Two angles and one side known.

2. Two sides and the angle included between them known.

3. Two sides and the angle opposite one of them known.

4. The three sides known.

Two Angles and One Side known. — Assume that the
angles A and B in Fig. 1 are given as shown, and that side
a is 5 inches. Find angle C, and sides & and c.

As the sum of the three angles in a triangle always equals
180 degrees, angle C can be found directly when angles A
and B are given, by subtracting the sum of these angles from
180 degrees. Angle A = 80 degrees and B = 62 degrees;
therefore,

C = 180° — (80° + 62°) = 180° — 142° = 38°.

For finding the sides b and ¢ the following rule is used:
The side to be found equals the known side multiplied by the
sine of the angle opposite the side to be found, and the product
divided by the sine of the angle opposite the known side.

To find side b, for example, multiply the known side a by
the sine of angle B, and divide the product by the sine of
angle A. Written as a formula this would be:

p = 2X sin B
sin A (x)
In the same way
_aXsinC (2)
c=—"—:
sin 4

168
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Example 2. — In Fig. 3, side a equals 3.2 inches, angle 4,
118 degrees, and angle B, 40 degrees. Find angle C and
sides b and c.

C = 180° — (118° + 40°) = 180° — 158° = 22°%

p = 3:2 X sin 40° _ 3.2 X 0.64279
sin 118° 0.88295

Note, when finding sin 118° from the tables, that sin
118‘: = sin (180° — 118°) = sin 62°.

= 2.330 inches.

¢ =32 X sin 22° _ 3.2 X 0.37461
sin 118° 0.88295

= 1.358 inch.

Fig. 3. Example 2 Fig. 4. Example 8

Example 3. — In Fig. 4, side b = 0.3 foot, angle B = 35° 40/,
and angle C = 24° 10’. Find angle 4 and sides ¢ and c.
A = 180° — (35° 40’ + 24° 10’) = 180° — 59° 50’ = 120° 10’}

: : o 7
o= bXsin 4 _ 0.3 Xsin 120° 10" _ 0.3 X0.86457 —o.445 foot;

sin B sin 35° 40 0.58307
_bXsinC _ 0.3Xsin 24° 10’ _ 0.3 X0.40939 —o.211 foot
sin B sin 35° 40 0.58307 T

Note that in this example the formulas for ¢ and ¢ have the
same form as Formulas (1) and (2), but as the side 4 is the known
side, instead of a, the side b is brought into the formula in-
stead of a, and angle B instead of angle A.

Summary of Formulas: If the angles of a triangle are called
A, B, and C, and the sides opposite each of the angles, a, b,
and c, respectively, as shown in Fig. 1, then, if two angles
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Side ¢ is found by Formula (2):

—aXsinC_9Xsings®_9Xo0.57358 _ o, jnches.
sin 4 sin 83° 4 0.99269

All the required quantities of this triangle have now been
found.

Example 1. —In Fig. 6, a = 4 inches, b = 3 inches, and
C = 20 degrees. Find A, B, ¢, and the area.

According to Formula (3):

Tan 4 = %X sinC__ 4 Xsin20° _ 4 X o0.34202
b—aXcosC 3 —4Xcos20° 3 —4 X o0.93969
_ _1.36808
3 —3.75876

It will be seen that in the denominator of the fraction above,
the number to be subtracted from 3 is greater than 3; the
numbers are, therefore, reversed, 3 being subtracted from
3.75876, the remainder then being negative. Hence:

Tan A = ,;1;3Q§°8_ = _I_ﬁi = —1. 80305.

3 — 375876  —0.75876
The final result is negative because a positive number
(1.36808) is divided by a negative number (—o0.75876). The
tangents of angles greater than go degrees and smaller than
180 degrees are negative. Find in this case the value nearest
to 1.80305 in the columns of tangents in the tables. In a
table containing values for each minute, the nearest value is
1.8028, which is the tangent of 60° 59’. As the tangent is
negative, angle A is not 60° 59/, but equals 180° — 60° 59
= 119° 1'.
Now angle B is found by the formula:
B = 180° — (4 + C) = 180° — (119° 1’ + 20°)
= 180° — 139° 1’ = 40° 59.
Side ¢ is now found by the same formulas and in the same
manner as previously shown.
Example 2. — In Fig. 7, a = 7 feet, b = 4 feet, and C 121
degrees. Find A, B, and c.
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remaining side may be found. One of the angles is first found
by any of the following formulas:

a XsinC a X sin B

= - t A=—L 2 = .

Tan 4 b—aXcosC’ an ¢ —a X cos B’
G b X sin A

Tan B =;_f_;,<_x§'m&f;_c; tan B T —;;)S:I::OSA;
. ¢ X sin B ¢ X sin 4

an C = £ XsinB_. tanC =< Xsnd
Tan € a —c¢ Xcos B’ n b—cXcos 4

The remaining side is found by using Formulas (1) and (2),
and the third angle by subtracting the sum of the known angles
from 180 degrees as previously explained.

S T ——

Fig. 9. Sides a and » and Angle 4 similar to Fig. 8 Fig. 10. Example 1

If the unknown angles are not required, but merely the
unknown side of ‘the triangle, the following formulas may be
employed:

a= V¥ +&—2b Xcosd;
b=+Va+ & — 2ac X cos B;
, c=Va+ b — 2ab X cos C.

Two Sides and One of the Opposite Angles known. — When
two sides and the angle opposite one of the given sides are
known, two triangles can be drawn which have the sides
the required length, and the angle opposite one of the sides,
the required size. In Fig. 8 is shown a triangle in which
side @ is 2.5 inches, side b, 3.5 inches, and angle 4, 32 degrees.
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Having sin B = 0.74343, it is found from the tables that
B = 48° 1’. As it is shown in Fig. 10 that angle B is less
than a right angle, the solution found is the one which applies
in this case.

Angle C = 180° — (4 + B) = 180° — (61° + 48°1") = 70°59’.

Side ¢ is found by Formula (2):

¢ = aXsin C _ 20Xsin 70° 50’ _ 20X0.94542

= 21.62 inches.
sin 4 sin 61° 0.87462 21.52 Inches

Example 2. — In Fig. 11, a = 5 inches, b = 7 inches, and
A = 35 degrees. Find B, C, and c.
According to the rule and formula in the previous example:

Sin B =2 xzi“" =1 xssinﬁ=7x—zm5§=o.80301.

Having sin B = 0.80301, it is found from the tables that
B = 53° 25'. However, in the present case it is seen from
the figure that B is greater than go degrees. The solution
obtained is, therefore, not the solution applying to this case.
The sine of an angle also equals the sine of 180 degrees minus
the angle. Therefore, 0.80301 is the sine not only of 53° 25,
but also of 180° — 53° 25’ = 126° 35’. The value of angle B
applying to the triangle shown in Fig. 11 is, therefore, 126° 35/,
because of the two values obtained, this is the one which is
greater than a right angle.

Example 3. — In Fig. 12, a = 2 feet, b = 3 feet,and 4 = 30
degrees. Find B, C, and c.

The sine of angle B is found as in the previous example:

. .
SinB=bXZ“‘A=3XS‘“3&
2

= 0.75000.

Having sin B = o.75000, it is found from the tables that
B = 48° 35'. From Fig. 12, it is apparent, however, that B
is greater than go degrees, and as o.75000 is the sine not only
of 48° 35, but also of 180° — 48° 35’ = 131° 25/, angle B in
this case equals 131° 25'.

. When the angle B is found, angle C and side ¢ are found in
the same manner as in Example 1.
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. If the given lengths of the sides are inserted in the first of
the formulas above, then:

Cos A = _9*+ 10" — 8 81+ 100 — 64 _ _z

= 0.65000.
2 X9gX10 180

Having cos 4 = 0.65000, it is found from the tables that
angle 4 = 49° 27'.

Having found angle 4 the easiest method for finding angle
B is by Formula (4). From this formula:

SinB:bXSmA=QXS1n49 27’ 9Xo75984

. 3 3 = 0.85482.

ﬁ——-—ans—-—>{ i(— —a=f— >
Fig.13. Three Known Sides — Fig. 14 Three Known Sides—
Example 1 Example 2

Having sm B = 0.85482, it is found from the tables that
B = 58° 44

Angle C = 180° — (4 + B) = 180° — (49° 27" + 58° 44)
= 71° 49"

Example 2. —In Fig. 14, ¢ = 5 inches, b = 4 inches, and
¢ = 2 inches. Find the angles of the triangle.

Using Formula (s):

Cos A = 2422 - 16+4 — 25 20 — 25
2 X4 X2 16 16

It will be seen that in the numerator of the last fraction,
the number to be subtracted from 20 is greater than 20. The
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lengths of the sides are represented by A4, B, and C, respec-
tively, and D equals one-half the sum of the sides, then:

A+B +C.
2

Area = V(D — A) X (D - B) X (D - C) X D.

Example. — What is the area of a triangle the sides of
which are 6, 8, and 10 inches long, respectively?

D=

One-half the sum of the sides = ﬁ%ﬂ = 12.

Area = V(12 — 6) X (12 — 8) X (12 — 10) X 12

= V6 X 4 X 2 X 12 = V576 = 24 square inches.

When Two Sides and an Angle are given. — When the
lengths of two sides of a triangle and the angle between the
sides are given, the area may be found by multiplying one-
half the product of the two sides by the sine of the angle
between them.

In the example in Fig. 1, the area, then, equals one-half
the product of sides @ and b multiplied by the sine of angle C,
or, expressed as a formula:

aXbXsinC_
2

Area =

If the known values for @ and b are 5 and 4.483 inches,
respectively, and angle C is 38 degrees, then:

5 X 4.483 X sin 38° _ 5 X 4.483 X 0.61566
2 2

~ 138000 _¢ square inches.
2

Area =

The three values given in Fig. 5 are 8 and ¢ inches for the
sides and 35 degrees for the angle between the sides. Hence:

Area =2 XbXsinC _ 9X8Xo0.57358 _ 20.649 square inches.

2 2
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AY

that the work should be turned around or indexed when one
side of the hexagon has been milled, and the next is ready to
be milled. Consequently, the index-crank should be turned
around 42 = 6% revolutions for milling a hexagon; that is,
the crank is first turned 6 full revolutions, and then, by means
of the index-plate, it is turned two-thirds of a revolution. If
the circle in the index-plate having 18 holes is used, two-
thirds of a revolution will mean 12 holes in this circle, as 12
is two-thirds of 18 (12 = § X 18).

Assume that a piece of work has eight sides regularly spaced
(regular octagon). The indexing for each side is found by
dividing 40 by 8. Thus 42 = 5, represents the number of
revolutions of the index-crank for each side indexed and
milled.

Assume that it is required to cut nine flutes regularly spaced’
in a reamer. The index-crank must be turned 42 = 44 revo-
lutions in order to index for each flute. The § of a revolution
would correspond to eight holes in the 18-hole circle, because
11 =4

Assume that it is required to cut 85 teeth in a spur gear.
The index-crank must be revolved $§ = { revolutlons to index
for each tooth. To move the index-crank f+ of a revolution
corresponds to moving it 8 holes in the 17-hole circle.

General Rule for Indexing. -— As a general rule for finding
the number of revolutions required for indexing for any regu-
lar spacing, with any index-head, the following rule may be
used:

Rule: To find the number of revolutions of the index-crank
for indexing, divide the number of turns required of the index-
crank for one revolution of the index-head spindle by the
number of divisions required in the work.

[Most standard index-heads are provided with an index-
plate fastened directly to the index-spindle for rapid direct
indexing. This index-plate is usually provided with 24 holes,
so that 2, 3, 4, 6, 8, 12, and 24 divisions can be obtained directly
by the use of this direct index-plate without using the regular
indexing mechanism. When using this index-plate for rapid
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15 16 17 18 19 20
21 23 27 29 31 33
37 39 41 43 47 49
Indexing for Angles. — While most indexing is for a given
number of divisions, it is sometimes necessary to rotate the
work through a given angle by means of the dividing-head.
In Fig. 1 is shown a piece of round stock having two flats
milled in such a way that the-angle between two lines from
the center at right angles to the two surfaces is 35 degrees.
In this case the index-head cannot be turned so as to make a
certain whole number of moves in one complete revolution
of the work, as is done, for instance, when four moves are
made in one revolution for milling a square, six moves in
one revolution for milling a hexagon, and 8o moves for milling
an 8o-tooth gear. Instead, here is given a certain number of
degrees which it is required that the work be turned before
another cut is taken by the milling cutter.
Indexing for angles is required only when an angle is given
which is not such a simple fraction of the whole circle as, for

instance, go degrees, which is ¥ of a complete turn, or4;

degrees, which is } of a complete turn, or 6o degrees, which is
3 of a complete turn; the numbers of turns of the index-crank
in these cases are determined as previously explained. But if
it be required to index for, say, 19 degrees, the method used is
the one explained in the following.

Calculating the Movements for Angular Indexing. — Therc
are 360 degrees in one complete circle or turn, and assuming
that 40 turns of the index-crank are required for one revolu-
tion of the work, one turn of the index-crank must equal
382 = g degrees. Then, when one complete turn of the index-
crank equals 9 degrees, two holes in the 18-hole circle, or
3 holes in the 27-hole circle, must correspond to one degree.

3 _2_1

27 18 9

The first principle or rule for indexing for angles is, therefore,
that two holes in the 18-hole circle or 3 holes in the 27-hole
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Below is shown how this calculation may be carried out to
indicate plainly the motion required for this angle:

114 deg. = 9 deg. + 2 deg. + % deg.

1 turn + 4 holes + 1 hole in the 18-hole circle.

Should it be required to index only } degree, this may be
made by using the 27-hole circle. In this circle a three-hole
movement equals one degree, and a one-hole movement in
the circle thus equals 4 degree, or 20 minutes. Assume that
it is required to index the work through an angle of 48 degrees
40 minutes. First turn the crank 5 turns for 45 degrees
(5 X 9 = 45). Then there are 3 degrees 40 minutes or 3}
degrees left. In the 27-hole circle a 3-degree movement cor-
responds to 9 holes, and a 4-degree movement to 2 holes,
making a total movement of 11 holes in the 27-hole circle,
to complete the crank movement for 48 degrees 40 minutes.
Below is plainly shown how this calculation may be carried
out: : ‘
48 deg. 40 min. =45deg. +3deg. +40 min.’

5 turns+g holes+2 holes in the 27-hole circle.

Indexing for Minutes. — By using the 18- and 27-hole
circles, only whole degrees and 3}, 4, and § of a degree (20, 30,
and 4o minutes) can be indexed. Assume, however, that it is
required to index for 16 minutes. One whole turn of the index-
crank equals g degrees or 540 minutes (9 X 60 = 540). To
index for 16 minutes, therefore, requires about ¥ of a turn-
of the index-crank (540 + 16 = 34, nearly). In this case,
therefore, an index circle is used having the nearest number
of holes to 34, or the index circle with 33 holes. A one-hole
movement in this circle would approximate the required
movement of 16 minutes. .

Assume that it is required to index for 55 minutes. We
then have 540 + 55 = 10, nearly. In this case there is no
index circle with 10 or approximately 1o holes, but as there
is an index circle with 20 holes, this circle will be used, and
the index-crank is moved two holes in that circle instead of
one.
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required of the index-cr;.nk to make one revolution of the
index-head spindle, and place these factors under the line.
Factor the number of holes in each circle chosen for trial and
place shese also under the line; then cancel similar factors
above and below the line. If all factors above the line cancel,
the division is possible with the two circles chosen. The
product of the factors remaining below the line will be the
number of holes to move forward in one of the circles, and
backward in the other.

Example. — Divisions required, 154; circles chosen, 33 and
21; number of turns of crank on index-head, 40. Factoring
as mentioned:

154 =2 X 7 X 11
33—21=2X2X3

40=2X2X2X5}§

33=3X11I

21 =3 X7

After cancelation it will be found that the factors 3 and 5
will remain below the line; hence, 3 X 5 = 15 holes, is the
number that the index-pin is moved forward in the 21-hole
circle and backward in the 33-hole circle to obtain the required
division. The mathematical reasoning or the principle upon
which this method is founded will now be explained.

Proof of Rule for Compound Indexing. — The method for
finding the movements for compound indexing is based upon
the principle that the difference between two moves obtain-
able on the index-plate equals the required division. A certain
number of holes moved forward in one circle and the same
number of holes moved backward in another circle gives a
movement which could not be obtained by either of the index
circles selected. To prove the method mathematically, pro-
ceed as follows: Let X be the number of holes sought. Other
quantities are as in the example given in the preceding para-
graph. Now a movement of X number of holes forward in
the 21-hole circle and X number of holes backward in the
33-hole circle equals 17 of a revolution of the work, or:



Digitized by GOOS[Q



190 SHOP MATHEMATICS

1Ix 4 7y = 40.
Then solving the preceding equation for the value of y gives:

_ 40 —IIX
y=="

Since it is known that x and y, which represent the numbers
of holes for the two indexing movements, must both be integral
or whole numbers, various integral values can be assigned
to x; these values can be substituted in the preceding ex-
pression for the value of x and the expression solved for y,
this method of procedure being continued until an integral
value of y is found.

When z = 1, then y is not a whole number.

When x = 2, then y is not a whole number.

When z = 3, theny = 1.

When the value of 3 is substituted for x, the corresponding
value of y is found to be 1, and when these values are inserted
in Formula (1), then:

341 _40
7 177

As applied to the milling machine index-head, this means
that the movement resulting from turning through 3 holes
in a 7-hole circle plus the movement resulting from turning
through one hole in an 11-hole circle will give the required
setting. By multiplying both terms of either fraction by
the same number, the value is not changed, and the de-
nominator may be made to assume a value corresponding
with the number of holes in a circle which is available on
some index-plate. Suppose, for instance, that we multiply
both the numerator and the denominator by 3. Then:

9 43 40
21 33 77
It will be evident, then, that in order to turn the index-
crank 4¢ of a revolution (thus indexing the work - revolu-
tion), the index-crank should be moved through ¢ holes in a
21-hole circle, and then through 3 holes in a 33-hole circle.
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The plus sign between the fractions indicates that both
indexing movements should be in the same direction. In
some cases, ¥y will have a minus sign, which indicates that
the two indexing movements are in opposite directions. For
example, suppose 69 divisions are required. The factors of
69 are 3 and 23; therefore:

y=42—"23%
3
When x = 1, then y is not a whole number.
When x = 2, then y equals ~2. (The.algebraic sum of
40 — 23 X 2 = 40 — 46 = —6, and —6 + 3 = —2.) There-
fore:

2_2 40,

3 23 69
Multiplying both terms of the fraction 4 by 11, it is changed
to §3; hence, the indexing movement is:

22 2

33 23

This means that the index-crank is moved forward 22 holes
in the 33-hole circle, and backward 2 holes in the 23-hole circle.



CHAPTER XIV
CALCULATIONS FOR CUTTING GEARS

IN repair shops or in the smaller manufacturing plants
where the cutting of gears is done on a small scale, the milling
machine is often used, and it may be desirable or necessary
for the one who does the gear-cutting to make whatever
calculations are required. This chapter deals with calcula-
tions pertaining to spur gears, rack teeth, bevel gears, worm-
gears, and spiral gears and includes only the information
actually needed in the shop for determining the blank diameters,
the depth of the teeth, the angular position of the blank in
the case of bevel, spiral and worm-gears, and similar data.

The Depth of Cut for Spur Gears. — The whole depth of
a spur-gear tooth, or the depth to which the cutter should
be set when milling the teeth, may be determined if either
the diametral or circular pitch is known. To obtain the
whole depth, divide 2.157 by the diametral pitch, or multiply
0.6866 by the circular pitch.

Example. — If the diametral pitch is 8, the whole depth of
the tooth equals 2.157 + 8 = 0.269 inch.

Example. — If the circular pitch is 0.3927, the whole depth
of the tooth equals 0.6866 X 0.3927 = 0.2696 inch.

Pitch of Spur-gear Teeth. — The pitch of the teeth of
spur gears may be expressed in two ways. The circular piitch
is the distance from the center of one tooth to the center of
the next along an imaginary circle known as a pitch circle.
The diametral pitch (which is the term generally employed)
represents the number of teeth for each inch of the pitch
diameter.

When the circular pitch is known, the diametral pitch is
found by dividing 3.1416 by the circular pitch. If the dia-

192
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For the diameter of the root circle, subtract 2.314 from the
number of teeth and divide by the diametral pitch; the result
is the required diameter.

Example. — Suppose a gear has 48 teeth and is of 4 di-

ametral pitch; then 18—4_—2 = ‘ig = 114 inches, diameter of

circle representing the working depth of the teeth. 2 —42. :

= 15438—6 = 11.4215 inches, diameter of circle representing the

bottoms of the teoth spaces.

Center-to-center Distance between Spur Gears. — The
center-to-center distance between meshing spur gears may
be determined by adding the numbers of teeth in both gears
and dividing the sum by twice the diametral pitch.

Example. — If one gear has 40 teeth and the other 70 teeth
and the diametral pitch is 8, what is the center-to-center
distance between the gears?

The total number of teeth in both gears equals 40 + 70 =110,
and 110 + 2 X 8 = 6.875 inches.

The center distance may also be determined by multiplying
the total number of teeth in both gears by the circular pitch
and dividing the product by 6.2832. In the case of internal .
spur gears, the center-to-center distance is found by sub-
tracting the number of teeth in the pinion from the number
in the gear and dividing by twice the diametral pitch.

Calculations for Cutting Rack Teeth. — The teeth of a
rack are of the same proportions as the teeth of a spur gear or
pinion which is intended to mesh with the rack.

Example. — If a pinion having 24 teeth of 6 diametral pitch
is to mesh with a rack, what should be the linear pitch of
the rack teeth, or the distance from the center of one tooth
to the center of the next tooth? How is the whole depth of
the rack teeth determined?

The pitch of the rack teeth is equal to the circular pitch
of the pinion (distance from the center of one tooth to the
center of the next tooth along the pitch circle), and is found
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The tangent of the pitch-cone angle equals 6o + 15 = 4,
which is a tangent of 75 degrees 58 minutes. In order to
determine the addendum angle, it is necessary to find the
addendum, the pitch diameter, and the pitch-cone radius.

The addendum = 1 + 3 = 0.3333;
The pitch diameter = 6o + 3 = 20 inches;
The pitch-cone radius

20
2 X 0.97015

The tangent of the addendum angle equals the addendum
divided by the pitch-cone radius, or0.3333 + 10.3077 = 0.0323,
which is the tangent of 1 degree 51 minutes.

Having now determined the pitch-cone and addendum
angles, the face angle equals go degrees — (75° 58’ + 1° 51')
= 12 degrees 11 minutes. Therefore, when turning the blank
from which the gear is to be made, the compound rest should
be swiveled around 12} degrees from its zero position.

In order to calculate the face angle of the pinion, its pitch-
cone angle must first be determined. The tangent of the
pitch-cone angle for the pinion equals the number of teeth
in the pinion divided by the number of teeth in the gear; in
this case, 15 + 60 equals o.25, which is the tangent of 14
degrees 2 minutes. The addendum angle for the pinion is the
same as for the gear, and, therefore, the face angle equals
40 degrees — (14° 2’ + 1° 51') = 74 degrees 7 minutes. The
compound rest, then, should be set to 743 degrees, approxi-
mately, for turning the pinion blank.

Outside Diameter of a Bevel-gear Blank. — The outside
diameter (O, Fig. 1) of a bevel-gear blank is obtained as fol-
lows: First, multiply the addendum by the cosine of the pitch-
cone angle; then multiply this product by 2 and add the product
thus obtained to the pitch diameter. Take as an example the
bevel gearing referred to previously. The gear has 6o teeth
and the pinion 15 teeth of 3 diametral pitch, and the shafts
are at right angles to each other. What is the outside diameter
of the gear?

=20 + (2 X sin75°58") = = 10.3077 inches.
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Minimum Length of Worm. — The shortest length to
which the worm should be made is found by subtracting four
times the addendum of the worm-thread from the throat
diameter of the worm-wheel, squaring the remainder, and
subtracting the result from the square of the worm-wheel
throat diameter. The square root of the result represents
the minimum length of the worm.

Fig. 2. Double-threaded Worm — Sectional View of Worm-wheel

Taking the example referred to in the preceding paragraph,
the addendum of the worm having a linear pitch of o.5 inch
equals o.1591 inch, and the throat diameter of the worm-
wheel equals 7.48 inches. Four times the addendum sub-
tracted from the throat diameter equals 7.48 — (4 X o.1591)
= 6.843 inches. This remainder squared and subtracted
from the square of the throat diameter equals 7.48% — 6.843%
= ¢.12 square inches. The square root of 9.12 equals 3 inches
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the teeth of a spiral gear and its axis, by measuring a gear
which is already cut, the object being to reproduce the sample
gear. In order to determine the helix angle by the following
method, it is necessary to know the width W of the face (see
Fig. 3), the distance A that a tooth advances in the width of

DEVELOPED
PITCH BURFACE

-— W —

Fig. 3. Disgram illustrating Method oé‘e;l;lt:hﬂng Tooth Angle of Spiral’

the face, the outside diameter O, and the pitch diameter D.
All of these measurements are taken directly from the sample,
except the pitch diameter. The latter is obtained from the
normal diametral pitch of the cutter used for cutting the
gear teeth, and is found as follows: Divide 2 by the normal
diametral pitch, and subtract the quotient from the outside
diameter. The difference equals the pitch diameter.
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circumference of the screw equals 2.25 X 3.1416 = 7.068.
Therefore, tan a = -7%23 = o.0707, which is the tangent of

4 degrees, approximately.

Width of Cutter for Milling Straight-tooth Clutches. —
The width of the cutter to use for milling the teeth of straight-
tooth clutches (of the type illustrated by the diagram, Fig. 2)
depends upon the width of the tooth space across the inside
diameter of the clutch.

Rule: In order to determine the cutter width W, first find
the angle @ of the tooth space by dividing 360 by twice the

Fig. 2. Diagram illustrating Problem of determining Width W of Cutter for
Milling Straight-tooth Clutch

number of clutch teeth. Divide the sine of this angle by 2
and multiply the quotient by the inside diameter D of the
clutch to obtain the width W of the cutter.

Example. — If the clutch is to have 7 teeth and the inside
diameter D is 4 inches, what width of cutter should be used?

As there are to be 7 teeth, the angle a¢ of the tooth space
equals 360 + 14 = 25.7, or 25 degrees 40 minutes, approxi-
mately. The sine of 25 degrees 40 minutes, or 0.433 <+ 2
= 0.216, and 0.216 X 4 = 0.86, or § inch, nearly. Hence,
a cutter # inch wide would be used.

Clutches of this kind usually have an odd number of teeth,
the advantage being that a cut can be taken clear across the
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In this formula, N equals the number of teeth in the clutch.
Both the formula and the preceding rule apply to the single-
angle form of clutch-tooth which has one side parallel with
the axis of the clutch.

Example. — A clutch is to have 10 teeth and is to be milled
with a 6o-degree single-angle cutter. To what angle a should
the dividing-head be set?

180 + 10 = 18°% and the tangent of 18 degrees is o.3249.
The cotangent of the cutter angle equals o.5773, and o0.5773

X 0.3249 = 0.1875, which is

the cosine of 79 degrees 10

minutes, nearly. .

Depth of Keyway.—When

milling or planing a keyway,

it is convenient to adjust

the tool until it just grazes

the top of the shaft, and

then adjust it to the proper

depth from this point. If

the depth B (Fig. 4) at one

side is given on the drawing,

Fig. 4. Values required in Formula for it is necessary to determine
Keyway Milling the height of the arc 4 and

add this to depth B to de-

termine the total depth as measured from the top of the shaft.

Rule: To find the height of arc A, square one-half the
width of the keyway and subtract the result from the square
of the shaft radius. The square root of the remainder, sub-
tracted from the shaft radius, equals the height A4 of the
arc.

Expressed as a formula in which the letters correspond to

those in Fig. 4:
A=R-VE-QW:L

Example. — If the shaft diameter is 10 inches and the
width of the keyway is 2 inches, what is the height of arc 4?

A=5—Vs—11=75— V24 =5 — 4899 = o.101 inch.
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rods or plugs which are placed against each side of the dove-
tail. This same general method applied to a female dovetail
is illustrated by the lower view, B. The dimension x for
gaging the male dovetail may be determined by the following
rule:

R

|

L]

N\

2007 S
. /0
/// _ e

A

Fig. 7. Measurement of Dovetail Slides by Cylindrical Plug Method

Rule: Add one to the cotangent of one-half the dovetail
angle ¢ and multiply the sum by the diameter D of the
cylindrical rods used. Next add the product thus obtained
to dimension m.

- Expressing this rule as a formula:

x=DX (14 cotla)+m.

Example. — If the width m of a male dovetail is to be 10
inches, the angle g, 50 degrees, and diameter D of the rods,
1.25 inch, to what dimension x should a vernier caliper be
set for testing the width of the dovetail?
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Weight of Sheet Iron per Square Foot. — The weight of
sheet iron is found by using the number of thousandths of
thickness considered as a whole number and dividing by 25
to obtain the weight in pounds per square foot. Hence $-inch
" plate equals 125 thousandths + 25 = 5 pounds. This, too,
is based on 480 pounds per square foot and is 2 per cent too
light for steel, which would then weigh 5.1 pounds in the
above example. The result obtained by using a block 12
inches thick is

12 X 1000
25

To this add 2 per cent for sheet steel which equals 480 + 9.6

= 489.6 pounds.

= 480 pounds, for iron.

: A

Fig. 8. Diagram represen! Bars of Stock in a Pile and illustrating
Rapid Method of determining Number

" Number of Bars of Stock in a Pile. — When bars of stock,
billets or other picces of uniform size are piled in rows, as
illustrated in Fig. 8, the number may be determined without
actually counting all the pieces. The method is as follows:
Multiply the number of bars or other pieces in the top row
by the number of rows, which gives the number contained
in the parallelogram shown at 4. To this result add the
number of odd bars, if any, on top of the pile and also the
product of one-half the number of rows multiplied by one
less than the number of rows in the pile. The latter gives the
number of bars shown at the right of the parallelogram. This
rule can be stated as a simple formula as follows:

N = TS+*§(S—I)+0,

in which,
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In the case shown at B, T =1, B=%7, N=7, 0 =o.
Inserting these values in the formula and solving:

S=(1+7)§+§=8X§+o=28.

To Find Economical Length of Stock for Four-spindle
Screw Machine. — Frequently, in multiple-spindle screw-
machine work, four bars of unequal length are in the machine
and one bar of stock remains to be cut. The problem then
arises of cutting this bar into four pieces of such lengths that
all the stock will be finished at the same time, yet none of
the spindles will be running empty while the others are
finishing. - '

This can be solved by finding the difference in the lengths of
the bars in the machine and’then finding the amount that
must be added to the longest bar. For example, the remain-
ing bar is 8 feet long. The difference between the longest
and the next longest bar is ¢ inches; between the longest
and the third longest bar is 14 inches; and between the long-
est and the shortest bar is 17 inches.

If x = number of inches to be added to longest bar;
% + ¢ = number of inches to be added to next longest bar;
% + 14 = number of inches to be added to third longest bar;
x + 17 = number of inches to be added to shortest bar;
4 x + 40 = amount to be added to all the bars.

As the remaining bar is 96 inches long, 4x + 40 = ¢6;
4x = 96 — 40 = 56, and x = 14. So the lengths into which
the bar should be cut are x = 14 inches; x + 9 = 23 inches;
x + 14 = 28 inches; and x + 17 = 31 inches.

Setting the Sine Bar to a Given Angle. — A simple applica-
tion of the sine bar is illustrated by the diagram, Fig. 9. A
taper plate is to be ground to an angle of 10 degrees 30 minutes.
After one edge is finished straight the plate is held against
an angle-plate and upon a sine bar, which must be set to the
angle required. An accurate sine bar can be set to a given
angle within close limits, provided the distance C between
the centers of the plugs or bushings attached to the bar is
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Example. — Suppose a gage is to be ground to an angle
of 31 degrees. To what distance x should the height gage be

t?
s Sin 31 degrees = o.51504.

Therefore,
Z = 0.51504 X § + 1.75 = 4.325 inches.

This fixture has in addition to a plug on the leaf another
plug on the base, the center of which is also exactly 5 inches
from the center of the pivot. The height £ would be required
when setting the leaf to a given angle A by means of a height
gage or a similar measuring instrument, but if a micrometer

/MOE

P j— : —Is"‘
|

Fig. 10. Sine-bar Fixture

or a vernier caliper were used, the distance y over the plugs
would be required. The distance y from the outside of one
plug to the outside of the other plug equals the sine of } the
angle C multiplied by twice the center distance, plus the plug

diameter, or y = sin ¢ X 10 + 0.5, for this particular sine bar.
2

The angle A represents the angle between the leaf and base
of the fixture. Angle C for any angle A equals 4 + 10 degrees.
The angle of 10 degrees marked on the drawing (Fig. 10)
represents the angle between a horizontal line intersecting the
axis of the leaf pivot and a line passing through the center of
this pivot and the center of the lower measuring plug.
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the conical surface to be turned at the required angle a. The
first step is to find angle . To obtain the sine of angle b,
multiply the sine of the required angle a by the rate of the
horizontal feeding movement, and divide the product by the
rate of the vertical feeding movement. Thus, sine b equals
sina X H

4 .
and vertical feeding movements, respectively. The difference
between the sum of angles ¢ and b and go degrees equals the
required angle x.

Example. — A conical-shaped casting is to be turned to an
angle of 34 degrees as measured from the base of the casting.
If the rate of the horizontal feeding movement to the vertical
feeding movement is as 4 is to 3, and the combined feeds are
used, to what angle x (see Fig. 13) should the tool-slide of the
boring mill be set?

The sine of 34 degrees equals o.559; therefore, the sine of

angle b equals &S.i;m = 0.7453, and angle b equals 48

,in which H and V represent the rates of horizontal

degrees 10 minutes, approximately. The angle x through
which the tool-slide is moved from its vertical position equals
90° — (34 + 48° 10) = 7 degrees 50 minutes, or approxi-
mately 10§ degrees.

In this case, the lower end of the tool-slide is moved to
the right from its vertical or central position, because the
required angle ¢ is less than the angle y obtained from the
combined feeds when the tool-bar is vertical. If angle @
were greater than y, the lower end of the tool-slide would be
moved to the left from its vertical position, and the sum of
angles a and b would exceed go degrees, so that the latter
would be subtracted from this sum.

Taper Turning on Vertical Mill when Housing is set back.
— The housing of a vertical boring mill is sometimes set back
to permit turning or boring a casting which is too large in
diameter to clear the housing when the latter is in its proper
position. As an example, assume that a large ring, 14 feet
6 inches in diameter, is to be bored out with a taper of 30
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cannot be used, so-it is necessary to use the heads on the
cross-rail. At what angle must the head be set in this loca-
tion in order to give the 3o-degree bevel?

The angle may be obtained either from a carefully drawn
diagram or by a simple calculation. It should be noted, how-
ever, that feeding the tool in a straight line under the con-
ditions given will not produce a perfectly straight beveled
surface, but one that is slightly convex, although the inac-
curacy in this case is slight.

Considering first the graphical method, draw, preferably to
~a large scale, a sectional view and plan of the bevel ring, as
shown in the illustration. Line CE represents the path of the
tool. Points C and E projected to K and D give line KD,
which also represents the path of the tool. Angle DKL,
therefore, is the angle to which the head should be set. This
angle can be measured by a protractor, if the drawing has been
carefully made. It will, in the given case, be found to equal
233 degrees.

In order to ascertain if the line KD corresponds fairly well
with the hyperbola along which the tool should properly be
fed so as to produce a perfectly straight face at 4B, con-
struct the curve which forms the intersection between plane
CM and the cone of which beveled face AB is a part. The
construction of the intersecting curve, which is one of the
problems found in practically all text-books on mechanical
drawing, is accomplished by projecting points P from the
plan view to the sectional view as indicated. It will be found
that in the present case the hyperbola almost coincides with the
straight line between points D and K. Hence, the inaccuracy
produced, that is, the convexity of face 4B will be slight.

To calculate angle DK L, proceed as follows: First find the
length of CM.

VCN*=NM?=CM. Hence,CM = m= 64.34 inches.
Next find the length of EN and of EM.

EN = CN — AF = 84 — 6 X cos 30deg. = 78.8 inches.

EM = VEN? — NM? = V78.8®2 — 54% = §7.39 inches.
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Since the gears must be of a certain pitch, the total number
of teeth available may be determined and then the number
of teeth in the driving and driven gears. The total number
of teeth equals twice the product of the center distance multi-
plied by the diametral pitch. If the center distance is 6 inches
and the diametral pitch, 10, the total number of teeth equals
6 X 10 X 2 = 120 teeth. The next step is to find the number of
teeth in the driving and driven gears for a given rate of speed.

Rule: Divide the speed of the driving gear in revolutions
per minute by the speed of the driven gear and add one to
the quotient. Next divide the total number of teeth in both
gears by the sum previously obtained, and the quotient will
equal the number of teeth in the driving gear. This number
subtracted from the total number of teeth will equal the
number of teeth required in the driven gear.

Example. — If the center-to-center distance is 6 inches, the
diametral pitch, 10, the total number of teeth available will
be 120, as previously explained. If the speeds of the driving
and the driven gears are to be 100 and 6o revolutions per
minute, respectively, find the number of teeth for each gear.

I0_12and 1% + 1 = 23.
60
120 + 22 =222 X 3 = 45 = number of teeth in driving gear.
I

The number of teeth in the driven gear equals 120 — 45 = 75
teeth.
The following formula may also be used for solving problems
of this kind:
_ C2RP n = C2RP
R + R1 R + Rl
In this formula,

C = center-to-center distance between gears;
R and R, = terms of the ratio (substitute highest term for R);
P = diametral pitch;
N = number of teeth in large gear;
n = number of teeth in small gear.




Digitized by GOOS[Q



234 SHOP MATHEMATICS

Example. — D = 10 inches; d = 8 inches. What is the
mean circumference? M = 3.1416 X -m—:'-g = 28.27 inches.

When rings are of odd shape or are not circular, the mean
circumference may be obtained if the diameter of the stock
and the length of the periphery, either on the inside or out-
side, are known. If the measurement around which the part
is to fit is known, this measurement is considered as a cir-
cumference and is divided by 3.1416 to obtain a correspond-
~ ing diameter. To this diameter, add the diameter of the
stock and multiply the sum by 3.1416, thus obtaining the

\F/}( — 1~
W

Pig. 17. Method of determining Radius of Large Curve

length of the odd-shaped ring or what corresponds to the mean
circumference.

Example. — Suppose a ring similar to one of the shapes
shown at the left-hand side of Fig. 16 is made of 1-inch stock
and is to fit over a part which measures 25} inches around,
the measurement being taken by means of a flexible steel
tape. The diameter corresponding to 25§ inches, or 25.125
=+ 3.1416, equals 8 inches, approximately; hence, the mean
circumference or length of the stock equals 3.1416 X (8 + 1)
= 28} inches, nearly.

Radius of Large Curves. — It is sometimes necessary to
find the radius of a large curve, the center of which is not
accessible. For instance, the curved part may be a circular
plate or a templet for an arc. A common method of deter-
mining the radius is indicated by the diagram (Fig. 17). A
straightedge of any convenient length L is placed on the
curved part, and the height H is measured, this height being
the distance between the straightedge and the middle part
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assuming that T = the number of hours required for the
outward trip; 7T) = the number of hours required for the
return trip. In the example referred to, the time required
for the outward trip of the train running at different rates of
- speed is equal to 50 + 35 = 1.428 hour, and the time required
for the return trip equals 50 + 45 = 1.111 hour; hence,

Average speed = 35 X 1.428 + 45 X 1.101 _ 99.07 _ 39:37

1.428 + 1.111 2.539
miles per hour.
|
L& |
|
A= l
o
| 4
<—-—D —-—X 1
k . c »
Machinery

Fig. 19. Method of finding the Height of a Stack or Chimney

Average Speed of a Planer Table. — There is a common
application in ordinary shop work of the principle involved
in this problem. A planer has a cutting speed of 20 feet per
minute, and a return speed of 6o feet per minute. At first
thought, it may seem that the average speed of the planer
platen is 40 feet per minute, but that conclusion is not cor-
rect. For simplicity, assume the exaggerated condition in
which the stroke of the planer is 6o feet. The cutting speed
being 20 feet per minute, the forward stroke will require 3
minutes; and the return speed being 6o feet per. minute, the
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CHAPTER XVI
EXAMPLES IN ELEMENTARY MECHANICS

THE problems in this chapter are not directly applicable
to machine-shop or tool-room practice, but illustrate important
principles which should be understood by all who desire a
broader mechanical training than can be acquired from shop
experience alone. When the student of mechanics under-
stands the fundamental principles or what might be defined
as the “foundation principles,” many problems are simplified
which otherwise would prove difficult. Such knowledge is
of especial value to those who attempt to originate new me-
chanical devices, whether as inventors or designers. Many
‘inventions are worthless because the inventor did not under-
stand the first principles of mechanics. The numerous at-
tempts to develop perpetual motion machines are notable
examples of waste effort resulting from a lack of elementary
mechanical knowledge.

Work and Power. — When a force causes some body, such
as a machine part, to move in opposition to a resistance, this
is known in mechanics as ‘““work,” and it is the result of force
and motion. If the force is not great enough to overcome
the resistance, no motion occurs and no work is done, accord-
ing to the use of this term in mechanics. When one pound
is raised vertically one foot against the resistance of gravity,
the work done is equivalent to one foot-pound, and this is a
unit of work. If a casting weighing 100 pounds is lifted to
a bench 3 feet high, the work done is equivalent to 300 foot-
pounds. It is evident, then, that if F = foot-pounds of work,
W = weight in pounds, and H = height in feet, then the
number of foot-pounds of work is F = W X H.

It should be noted that the time is not considered in de-

termining the total amount of work done. If 100 pounds are
242 ’
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=2X40 X2 _ ) pounds.
5—4t

A mechanism of this kind ought to have an efficiency of
at least o.9o; hence, the weight lifted ought to be at least
2240 X 0.90 = 2016 pounds.

When the Force is transmitted through a Gear or Pulley
Train. — The principle of a simple wheel and axle may be
applied to a train of mechanism, such as a train of pulleys
or of gearing. In a train of this kind, the continued product
of the applied force and the radii of the driven wheels equals
the continued product of the resistance and the radii of the
driving wheels. In a wheel and axle (see diagram, Fig. 1),
the axle is really a driver and the wheel is driven. Now, if
F represents the force as before; W, the weight or resistance;
R and R, the radii of the driven gears; and r and », the radii
of the driving gears, as shown by the diagram, Fig. 2; then,

FXRXR =WXrXn.
Therefore,
F=WX’X",a.ndW=FXRXR‘-
R X R, rXn

Example. —If the pitch diameters of the gears shown in
Fig. 2 are such that radius R = 6 inches, r = 2 inches, R, = 5
inches, and r = 23 inches, and a force F of 500 pounds is
applied, what weight W can be lifted if the loss of energy from
friction is neglected?

W = S&ZS(_%‘_ZS_S = 3000 pounds.
2 .

When Force is transmitted through Pulley Combinations.
— The principle of work is further illustrated by the dia-
grams, Fig. 5, which show two different combinations of
pulleys. The problem in this case is to determine the amount
of force P that will be required to raise weight W. The pulleys
shown by the right-hand diagram will be considered first.
In this diagram, 4 is a movable pulley and B a fixed pulley.
If the pulley A be lifted upward through a distance s, part o
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a body, and it may be kinetic or potential energy. The work
which a flywheel in motion is capable of doing is an example
of kinetic energy, the latter being the energy resulting from
a body in motion. Potential or latent energy is the capacity
for doing work possessed by a body on account of its con-
dition or position. For example, a weight that has been
lifted to some point possesses potential energy, and when the
weight falls, this potential energy is changed to kinetic energy.
Water stored in a reservoir is another example of potential
energy.

If a cast-iron “skull-cracker,” such as is used for breaking
up castings, weighs 300 pounds, and is suspended 16 feet
from the ground, it possesses 4800 foot-pounds of potential
energy, because, when the weight was raised 16 feet, 4800
foot-pounds of work were expended. When the ‘skull-
cracker” is released and it strikes a casting on the ground, the
kinetic energy expended is equal to 4800 foot-pounds. Energy
is acquired by a body as the result of work done upon it, as
when a flywheel is set in motion or when water is pumped
up into a reservoir. If E = energy in foot-pounds; V =velocity
in feet per second; W = weight; then,

E=—><WVz wr
2 32.16 6432

Example. — If the head of a steam-hammer weighs 800
pounds and it is moved at the rate of 3o feet per second, at
the instant it strikes a steel block, what is the kinetic

energy?

= 800 X 30" _ 11,194 foot-pounds.

64.32
Example. — If a body weighs 200 pounds and moves at
the rate of 40 feet per second, what is its kinetic energy, and
how many horsepower would be required to give it this amount
of kinetic energy in five seconds?

,E=2oo><402

= foot- .
6032 4975 foot-pounds
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Example. — The head or hammer of a pile-driver weighs 300
pounds, and it falls 10 feet upon a pile which is driven 4 inches
into the ground. What is the average force of the blow?

The force of the blow in foot-pounds equals 300 X 10 = 3000
foot-pounds. This energy is expended over a distance of
4 inches, or 4 foot. Hence, the average force of the blow equals
3000 + 4 + 300 = gooo + 300 = 9300 pounds.

While the foregoing method of calculating the force of a
blow is satisfactory for a pile-driver which simply has a falling
weight, the force of a blow struck by a steam-hammer, or by
a hammer held in the hand, depends upon additional force.
If the weight of the hammer and its velocity are known, the
average force of the blow may be determined, although or-
dinarily it would be difficult to determine the velocity of the
hammer at the instant it struck the object. To illustrate
this method of calculating the force of a blow, assume that
the head of a steam-hammer and the parts attached to it
(piston-rod and piston) weigh 1000 pounds and that a heated
block of steel is reduced } inch in height when the hammer
strikes it with a velocity of 30 feet per second. What is the
average force of the blow?

The kinetic energy of the hammer blow is first determined.
Kinetic energy = Z—I:; Therefore, in this particular case,
the kinetic energy equals:

2
-I—°—°g;x33- = 14,000 foot-pounds.
4.32

The block of steel was reduced % inch, or 7% foot; hence,
the average force of the blow equals 14,000 + g + 1000
= 337,000 pounds.

The accuracy of calculating the average force of the blow
by dividing the energy in foot-pounds by the penetration is
affected to some extent, because the materials receiving the
blow have a certain amount of elasticity and do not entirely
retain the shape they have at the instant of the greatest
compression.
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the bar or plate to be bent is supported, and how the force
is applied. Ordinarily, the parts to be bent are either sup-
ported at both ends and the force is applied in the center,
or the work is held rigidly at one end and the force or pres-
sure is applied at the other. To illustrate the first case men-
tioned, suppose a structural steel bar } inch thick and 1}
inch wide is supported at points 18 inches apart, as shown at
A, Fig. 8. If the force F is applied at a point midway between
the supports, how many pounds pressure will be required for
bending the bar?

The tensile strength of structural steel is about 60,000
pounds per square inch, and if the elastic limit is assumed to
be 35,000 pounds per square inch, this will doubtless be some-
what greater than the actual elastic limit. The load in pounds
required for bending may be determined as follows:

Rule: Multiply the square of the thickness of the bar
(vertical dimension) by twice its width, in inches, and multiply
the product by the value assumed for the elastic limit. Then
divide this product by three times the distance (in inches)

between the supports.

" Applying this rule to the example given, the square of the
thickness, or o.75, equals o.5625, and o0.5625 X 1.5 X 2
= 1.6875. The assumed value for the elastic limit, or
35,000 X 1.6875 = 59,062. Dividing by three times the
distance between the supports, we have 59,062 + 3 X 18 = 1093
pounds. This figure is, of course, only approximate. The
actual load required for bending would probably be a little
less than the calculated load, especially if the value assumed
for the elastic limit is somewhat greater than the actual
elastic limit.

If the foregoing rule is expressed as a formula in which:

F = force in pounds required for bending;

S = stress in pounds per square inch, which exceeds
somewhat the elastic limit of the material;

B = width of the bar in inches;

T = thickness of the bar in inches, or its vertical dimension;

L = distance between supports in inches;
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F = force in pounds required for bending;

T = thickness of the plate, in inches;

B = width of the plate, in inches;

L = distance between point where pressure is applied
and center of bend;

S = stress in pounds per square inch, which slightly ex-
ceeds elastic limit of material;

then
F ____S)( B X T*
A) 6L

The values of S will vary considerably for different grades
of steel, and also with the condition of the steel. For instance,
unannealed steel will have a higher elastic limit than annealed
steel; consequently, the force required for bending can be
calculated only approximately.

Expansion of Metals due to Heat. — Practically all sub-
stances expand when heated and contract when cooled. The
expansion of solid bodies in a longitudinal or lengthwise
direction is known as linear expamsion, and an increase in
volume is known as volumetric, or cubical expansion. This
expansive property of metals is taken advantage of in assem-
bling certain parts, such as the tires of locomotive driving
wheels, or other parts which must fit together tightly and
which can be shrunk together more rapidly than by assembling
with a hydraulic or other press. This expansive property
may also prove troublesome at times, especially when a
machinist or a toolmaker is finishing some part which must
be very accurate. For instance, if a plug gage which has
become heated by the friction of grinding is ground to the
required dimension, it may shrink below the required di-
ameter as it cools, if the expansion is not allowed for or con-
sidered. For this reason, it is often necessary to cool gages,
or other accurate parts, down to an ordinary room temperature
before the size is measured. There are many other classes
of work in connection with which expansion and contraction
should be taken into consideration.
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Example. — If a steel end-measuring gage, 18.020 inches
long, is left near a furnace, and its temperature increases
from 70 to go degrees F., how much will the length be increased?

As the linear expansion for steel is given as 0.00000636,
the gage is lengthened by the 2o-degree rise of temperature
an amount equal to 18.020 X 0.00000636 X 20 = 0.0023 inch,
approximately.

Example. — A tire is to be shrunk to a locomotive driving
wheel center which is 62 inches in diameter. The tire is bored
to a diameter of 61.934 inches, 0.066 inch having been allowed
for the shrinkage fit. If the tire is to be expanded until it is
0.004 inch larger than the wheel center, so that it can easily
be placed in position for shrinking, to what temperature must
it be heated?

In solving this problem, it will be assumed that the original
temperature of the tire is 70 degrees F. A total expansion,
or increase in diameter, of about o.070 is required (62.004
— 61.934 = 0.070), and the diameter will be considered the
same as a linear dimension. The formula previously given
for determining the amount of expansion may be transposed,
so that the change of temperature required for a given amount
of expansion can be determined. Thus, if

A= LET
then A
=18

Now, A = 0.070; L = 61.934; E = 0.00000636.

Therefore,
0.070

T =
61.934 X 0.00000636

= 177 degrees.

Effect of Leverage on Resistance to Shear. — A flywheel
fitted with the safety device in the form of a shear pin is
shown in Fig. 9. A one-inch square steel pin C is held between
steel bushings, one bushing being held in the flywheel arm and
the other in a spider D keyed to the shaft B. The flywheel
A is free to revolve around the shaft, in case an overload
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provided the two parts of the rope were parallel. Thus,
suppose the weight Q were removed; the weight P tends to
fall and pull the rope along with it, but this is resisted by
fastening the free end of the rope. As a result, P acts down-
ward and the reaction acts upward; on the other side, P
acts upward and the reaction acts downward. The reaction
in the second case corresponds in every respect to the force Q;
hence, the total stress on the axle is 100 pounds, as before.

Fig. 10. Diagram m“’“&",ﬁ Method of determining Stress on

Under the conditions shown in the left-hand view, a part
of the reaction of the staple tends to draw the pulley away
from the perpendicular, and the stress on the axle is less than
the sum of the stresses in the two parts of the rope. To find
what this stress is, draw a line, as A B, parallel to the part
G of the rope, and make it of a length that will represent
so pounds; draw AC parallel to HS, the other part of the
rope, and make it of the same length, also representing 50
pounds; complete the parallelogram ACDB, and draw diagonal
AD; this measured to the same scale as A B gives the stress
on the axle and shows the direction in which it acts. By
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Then,
Horsepower transmitted eq

uals SX3.14 DNW’ or SDNW
12 X 33,000 132,000
approximately.

Example. — If the effective pull on a belt is 35 pounds per
inch of width, the diameter of the driving pulley, 20 inches,
the number of revolutions per minute, 150, and the width of
the belt, 3 inches, about what number of horsepower can be
transmitted by this belt?

Horsepower transmitted equals 35X 20 X150 X3 _ , ,
' 132,000

horsepower.

In some cases, the problem is to determine the width of the
belt for transmitting a given amount of power, and this may
be done by simply transposing the formula previously given.
Thus:

Width of belt = horsepower to be ;lzx;vsmitted X 132,000

To illustrate the use of this formula, suppose three horse-
power is to be transmitted and the effective pull, diameter
of pulley, and its speed are the same as given in the preceding
example. What width of belt is required?

Width of belt = % = 3% inches, approximately.
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If the pitch diameter is 12 inches, and the gear has 72 teeth,
the diametral pitch is found by following the vertical line
from 72 teeth until it intersects the diagonal line for 12-inch
pitch diameter; from the point of intersection follow the
horizontal line to the left-hand scale- for diametral pltch
where the diametral pitch 6, is read off.

If a 6-diametral pitch gear has a pitch diameter of 12
inches, then the number of teeth in the gear can be found
by following the horizontal line from 6 diametral pitch until

PITCH DIAMETER

156
1
13

12 8
1
10 H
o 1>
Eo m§
-
s 8 12 2
7 g
2 3
3 16
'30
8 16 24 382 40 48 56 64 T2 . 88 9

NUMBER OF TEETH IN GEAR

Fig. 1. Diagram of Diametral Pitch, Pitch Diameter, and Number of
Teeth in Spux ears

it intersects the diagonal line from 12 inches pitch diameter.
From the point of intersection follow the vertical line down
to the number of teeth, which in this case is 72.

Example. — Assume that the pitch diameter of a gear is
6 inches and the diametral pitch 8. How many teeth are
there in the gear?

By following the horizontal line from 8 diametral pitch
until it intersects the diagonal line for 6-inch pitch diameter,
and then from the point of intersection following the vertical
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the right-hand side, where the diameter of the driven pulley
is read off. In this case the line comes exactly between the
8- and the 12-inch marks, so that the diameter of the driven
pulley is, therefore, 10 inches.

If the diameter of the driven pulley is 10 inches and the
revolutions per minute of both pulleys, 400 and 500, are
known, but the diameter of the driving pulley required to be
found, the example is simply worked backwards; locate 10
inches on the scale to the right, follow the horizontal line
until it intersects the diagonal line from the lower corner,
marked 400 (number of revolutions of the driven pulley);
then, from the point of intersection, follow the vertical line
until it intersects the diagonal line from the upper corner,
marked 500 (number of revolutions of the driving pulley);
then from the point of this intersection follow the horizontal
line to the left-hand scale where 8 inches is read off as the
diameter of the driving pulley. The dotted lines, of course,
show the working of this problem also.

If the diameter of the driving pulley is known to be 8
inches, and the diameter of the driven pulley is 10 inches,
and it is known that the driving pulley makes soo revolu-
tions per minute, we can find from the diagram how many
revolutions the driven pulley makes. Follow the horizontal
line from the graduation 8 on the scale to the left until it
intersects the diagonal line 500 from the upper corner, and
from the point of intersection follow the vertical line until
it intersects the horizontal line from 10 inches diameter on
the right-hand scale. The diagonal line from the lower corner
on which the vertical and horizontal lines intersect, in this
case marked 400, gives the number of revolutions per minute
of the driven pulley.

Horsepower Diagram. — The diagram, Fig. 4, is used for
finding the horsepower which can be transmitted safely by
a shaft of known diameter, making a certain number of revo-
lutions per minute. If the horsepower to be transmitted and
the number of revolutions per minute are known, the diameter
of the shaft can be found.
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INDEX

Addition of negative numbers, rules, 32
Alligation, 29
Angles, and the use of tables when
figuring, 137
double or compound, 166
functions of, 139, 143
functions of, greater than go degrees,
152
functions of, tables, 145, 148
indexing for, 184
measurement of, with sine bar, 223
method of finding, when function is
given, 153
Angular measurement, 138
Areas, of plane surfaces, method of
calculating, 43 '
of triangles, 179
practical examples, 54
Arithmetic commonly used in shop
problems, s
Axle, pulley, stress on, 263

. Back-rest, movement of, for reduc-
tions of diameter, 224
Bar held at one end, bending, 259
Bars of stock, number in pile, 218
Bar stock, weight of, 66, 217
Bars supported at the ends, bending,
257
Belt and gear drive, combination, 97
Belting, horsepower transmitted by, 265
" Belt thickness, influence of, on pulley
speed, 91
Bevel gear, angular position for cutting
teeth, 197
blank, outside diameter, 196
blanks, face angle, 19§
cutter, number of teeth required, 198
drives, speeds of, 97
Blow, force of, 255

216

Cancellation, 6
Castings, sectional method of deter-
mining volume, 68
weight of, 66
Change-gearing for thread cutting, 118
Change-gears, calculated by means of
continued fractions, 124, 126
for cutting a worm thread, 128
for cutting metric threads, 122
for milling spirals, 131
for worms, method of calculating, 129
Circles, 47
Circular sectors, 48
Circular segments, 49
Circumference, mean, of a ring, 233
Clutches, saw-tooth, angular position
of blank for milling, 211
straight-tooth, width of cutter for
milling, 210
Cone, volume of, 60
Cosines, table, 148, 149
Cotangents, table, 150, 151
Cube root, extracting, 24
of fractions, 27
of whole number and decimal, 26
proof of, 27
Cube, volume, 56
Cutter, bevel-gear, number of teeth re-
quired, 198
milling, width of, for straight-tooth
clutches, 210
spiral milling, finding lead from
sample, 214
Cutting and return speeds, calculation
of, 114
Cutting speeds, for given diameter and
speed of work, 107
formulas and rules for calculating, 109
net, of planer, figuring, 117
of milling cutters, 109
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278 INDEX ]
Idier gears, effect, 98 Oblique-angled triangles, solution of,
Index circle, determining, 183 168 i
Indexing, compound, method of figur- Octagon, 50, 52
ing, 189 )

compound, rule, 187 Parallelognms, 4

for angles, 184 Parentheses in formulas, 38

for minutes, 186 Pentagon, so, §1

fractional part of a degree, 185 Percentage, figuring, 17

general rule, 182 Planer, figuring net cutting speed, 117

on milling machine, 181 - ~ Planer table, average speed, 238
Indexing movement, calculating, 181 Plane surfaces, how to calculate areas,

Kcyway, de[ith of, 212

\
Lathe screw constant, method of find-

ing, 118
Lead of milling machine, 132

Machine shop problems, 206

Mass and weight, distinction between,
251

Mathematics in the tool-room, 3

Mechanical efficiency and effectiveness,

253
Mechanics, elementary, 242
Metric threads cut with change-gears,
122
Milling cutter, for straight-tooth
clutches, width of, 210
spiral, finding lead from sample, 214
Milling machine, indexing, 181
lead of, 132
Milling, time required, 112
Multiplication and division of negative
numbers, 34
Multiplication, of common fractions,

5
of decimal fractions, 7
proving, 9
Multiplication signs omitted in formu-
las, 38

Negative and positive quantities, 31
Negative numbers, multiplication and
division of, 34
rules for adding, 32
subtracting, 33

43
Planing, time required, 113
Polygons, regular, so
Positive and negative quantities, 3x
Power in mechanics, 242
Powers and roots, proportion, 16

Powers of numbers, 18-

Prismoidal formula, 59
Prisms, volume of, 57
Proportion, 11
compound, 14
direct, examples, 12
inverse, examples, 13
involving powers and roots, 16
Pulley axle, stress on, 263
Pulley combinations, force transmitted
through, 248
Pulley diameters, diagram, 271
to find, in compound drive, go
Pulley speed, influence of beit thick-
ness, 91
Pulleys, speed of, 87
Pyramid, frustum of, 58
volume, 58

Rack teeth, calculations for cutting,
104
Radius, of circumscribed circle, 235
of large curves, 234
Rectangles, 43
Right-angled triangles, solution of, 155
Roots of numbers, 19

Screw machine, four-spindle, to find
economical length of stock for,
220
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Volume, of sphere, 61
of spherical sector and segment, 62
of spherical zone, 63
Volumes, weights and capacities, cal-
culation of, 56

\

Weight and mass, distinction between,
251
Weight, of bar stock, 66
of castings, 66
of materials, 65
Wheel and axle, application of principle
of work, 245

INDEX

compound, weight lifted, 246
Work and power in mechanics, 242
Work, principle of, 244
Worm-gear drives, speeds of, g9
Worm-gearing, calculations for cutting,

199

Worm, minimum length, 200
Worm thread, change-gears for cutting,

128
Worm-wheel, angular position for gash-
ing, zo1

Worm-wheel blank, throat diameter, 199
Worm-wheel throat, radius, 201
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