MODERN

MACHINE

SHOP PRACTICE.

Cuarter .—THE TEETH OF GEAR-WHEELS.

WHEEL that is provided with teeth to mesh, engage, or
gear with similar teeth upon another wheel, so that the
motion of one may be 1mparted to the other, is called, in general
terms, a gear-wheel.
When the teeth are arranged to be parallel to the wheel-axis,
as in Fig 1, the wheel is termed a spur-wheel. In the figure, A
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Fig. 1.

represents the axial line or axis of the wheel or of its shaft, to
which the teeth are parallel while spaced equidistant around the
rim, or face, as it is termed, of the wheel.

When the wheel has its teeth arranged at an angle to the shaft,
as in Fig. 2, it is termed a bevel-wheel, or bevel gear; but when
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this angle is one of 45° asin Fig. 3, as it must be if the pair of
wheels are of the same diameter, so as to make the revolutions of
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their shafts equal, then the wheel is called a mitre-wheel. When
the teeth are arranged upon the radial or side face of the wheel,
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Fig. 4.

as in Fig. 4, it is termed a crown-wheel. The smallest wheel of

and when the teeth are composed of rungs, as in Fig. 5, it is
termed a lantern, trundle, cr wallower ; and each cylindrical piece
serving as a tooth is termed a sfave, spindle, or round, and by
some a leaf.

An annular or internal gear-wheel is one in which the faces of
the teeth are within and the flanks without, or outside the pitch-
circle, as in Fig. 6; hence the pinion P operates within the wheel.

When the teeth of a wheel are inserted in mortises or slots

provided in the wheel-rim, it is termed a mortised-wheel, or a

cogged-wheel, and the teeth are termed cogs.

When the teeth are arranged along a plane surface or straight
line, as in Fig. 7, the toothed plane is termed a 7ack, and the
wheel is termed a pinion.

A wheel that is driven by a revolving screw, or worm as it is
termed, is called a worm-wheel, the arrangement of a worm and
worm-wheel being shown in Fig. 8. The screw or worm is some-
times also called an endless screw, because its action upon the
wheel does not come to an end as it does when it is revolved in
one continuous direction and actuates a nut. So also, since the
worm is tangent to the wheel, the arrangement is sometimes called
a wheel and tangent screw.

The diameter of a gear-wheel is always taken at the pitch
circle, unless otherwise specially stated as ‘ diameter over all,”’
«diameter of addendum,’’ or ¢ diameter at root of teeth,”” &c., &c.
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Fig. 7.

When the teeth of wheels engage to the proper distance, which
is when the pitch circles meet, they are said to be in gear, or
geared together. Itis obvious that if two wheels are to be geared
together their teeth must be the same distance apart or the same
pitck, as it is called.

The designations of the various parts or surfaces of a tooth of
a gear-wheel are represented in Fig. 9, in which the surface A is
the face of the tooth, while the dimension F is the width of face of
the wheel, when its size is referred to. B is the flank or dis-

a pair, or of a train or set of gear-wheels, is termed the pinion; | tance from the pitch line to the root of the tooth, and C the
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point. H is the space, or the distance from the side of one tooth

to the nearest side of the next tooth, the width of space being

measured on the pitch circle P P. E is the depth of the tooth,

and G its thickness, the latter also being measured on the

pitch eircle P P. When spoken of with reference to a tooth,
3

Fig. 8.

PP is called the pitch line, but when the whole wheel is referred
to it becomes the pitch circle. .

The points € and the surface H are true to the wheel axis.

The teeth are designated for measurement by the pitch ; the
height or depth above and below pitch line ; and the thickness.

The pitch, however, may be measured in two ways, to wit,
around the pitch circle A, in Fig. 10, which is called the arc or
circular pitch, and across B, which is termed the chord
_pitch.

In preportion as the diameter of a wheel (having a given pitch)
is increased, or as the pitch of the teeth is made finer (on a wheel

Fig. o.

of a given diameter) the arc and chord pitches more nearly
coincide in length. In the practical operations of marking out
the teeth, however, the arc pitch is not necessarily referred to,
for if the diameter of-the pitch circle be made correct for the
required number of teeth having the necessary arc pitch, and the
wheel be accurately divided off into the requisite number of

divisions with compasses set to the chord pitch, or by means of
an index plate, then the arc pitch must necessarily be correct,
although not referred to, save in determining the diameter of the
wheel at the pitch circle.

The difference between the width of a space and the thickness
of the tooth (both being measured on the pitch circle or pitch
line) is termed the clearance or side clearance, which is necessary
to prevent the teeth of one wheel fiom becoming locked in the
spaces of the other. The amount of clearance is, when the teeth
are cut to shape in a machine, made just sufficient to prevent
contact on one side of the -teeth when they are in proper gear
(the pitch circles meeting in the line of centres). But when the
teeth are cast upon the wheel the clearance is increased to allow
for the slight inequalities of tooth shape that is incidental to
casting them. The amount of clearance given is varied to
suit the method employed to mould the wheels, as will be ex-
plained hereafter.

The line of centres is an imaginary line from the centre or axis
of one wheel to the axis of the other when the two are in gear;
hence each tooth is most deeply engaged, in the space of the other
wheel, when it is on the line of centres.

There are three methods of designating the sizes of gear-wheels.
First, by their diameters at the pitch circle or pitch diameter and
the number of teeth they contain; second, by the number of
teeth in the wheel and the pitch of the teeth; and third, by a
system known as diametral pitch.

The first is objectionable because it involves a calculation to
find the pitch of the teeth; furthermore, if this calculation be

Fig. 10.

made by dividing the circumference of the pitch circle by the
number of teeth in the wheel, the result gives the arc pitch,
which cannot be measured correctly by a lineal ‘measuring rule,
especially if the wheel be a small one having but few teeth, or of
coarse pitch, as, in that case, the arc pitch very sensibly differs
from the chord pitch, and a second calculation may become
necessary to find the chord pitch from the arc pitch.

The second method (the number and pitch of the teeth) possesses
the disadvantage that it is necessary to state whether the pitch
is the arc or the chord pitch.

If the arc pitch is given it is difficult to measure as before,
while if the chord pitch is given it possesses the disadvantage
that the diameters of the wheels will not be exactly proportional
to the numbers of teeth in the respective wheels. For instance, a
wheel with 20 teeth of 2 inch chord pitch is not exactly half the
diameter of one of 40 teeth and 2 inch chord pitch.

To find the chord pitch of a wheel take 180 (= half the degrees
in a circle) and divide it by the number of teeth in the wheel. In
a table of natural sines find the sine for the number so found,
which multiply by 2, and then by the radius of the wheel in
inches. .

Example.—What is the chord pitch of a wheel having 12 teeth-
and a diameter (at pitch circle) of 8 inches? Here 180 + 12 = 15 ;
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(sine of 15 is -25881). Then -25881 x 2 = *51762 x 4 (= radius
of wheel) = 2°07048 inches = chord pitch.

TABLE OF NATURAL SINES.

Degrees. Sine. Degrees. Sine. Degrees. Sine.
I 01745 16 *27563 31 *51503
2 "03489 17 *29237 32 *52991
3 05233 18 *30901 33 *54463
4 *06975 19 *32556 34 "55919
5 -08715 20 *34202 35 *57357
6 *10452 21 +35836 36 +58778
7 12186 22 *37460 37 60181
8 *13917 23 *39073 38 *61566
9 "15643 24 *40673 39 -62932

10 17364 25 42261 40 64278
11 19080 26 *43837 41 65605
12 "20791 27 “45399 42 +66913
13 '22495 28 46947 43 -68199
14 *24192 29 +48480 44 69465
15 25881 30 *50000 45 *70710

The principle upon which diametral pitch is based is as
follows :—

The diameter of the wheel at the pitch circle is supposed to be
divided into as many equal parts or divisions as there are teeth
in the wheel, and the length of one of these parts is the diametral
pitch. The relationship which the diametral bears to the arc
pitch is the same as the diameter to the circumference, hence a
diametral pitch which measures 1 inch will accord with an arc
pitch of 3°1416; and it becomes evident that, for all arc pitches
of less than 3-1416 inches, the corresponding diametral pitch
must be expressed in fractions of an inch, as 3, %,  and so on,
increasing the denominator until the fraction becomes so small
that an arc with which it accords is too fine to be of practical
service. The numerators of these fractions being 1, in each
case, they are in practice discarded, the denominators only being
used, so that, instead of saying diametral pitches of §, 4, or , we
say diametral pitches of 2, 3, or 4, meaning that there are 2, 3,
or 4 teeth on the wheel for every inch in the diameter of the pitch
circle.

Suppose now we are given a diametral pitch of 2. To obtain
the corresponding arc pitch we divide 3-1416 (the relation of the
circumference to the diameter) by 2 (the diametral pitch), and
31416 =+ 2 = 1°57 = the arc pitch in inches and decimal parts of
an inch. The reason of this is plain, because, an arc pitch of
3'1416 inches being represented by a diametral pitch of 1, a
diametral pitch of  (or 2 as it is called) will be one half of 3-1416.
The advantage of discarding the numerator is, then, that we
avoid the use of fractions and are readily enabled to find any arc
pitch from a given diametral pitch.

Examples.—Given a 5 diametral pitch; what is the arc pitch ?
First (using the full fraction 1) we have 3 x 3°1416 = 628 = the
arc pitch. Second (discarding the numerator), we have 3'1416 +
5 = *628 = arc pitch. If we are given an arc pitch to find a
corresponding diametral pitch we again simply divide 31416 by
the given arc pitch.

Example.—What is the diametral pitch of a wheel whose arc
pitch is 1§ inches? Here 3°1416 + 1'5 = 2'09 = diametral pitch.

- The reason of this is also plain, for since the arc pitch is to the
diametral pitch as the circumference is to the diameter we have :
as 3'1416 is to 1, so is 1'5 to the required diametral pitch; then
31416 x 1+ 1'5 =209 = the required diametral pitch.

To find the number of teeth contained in a wheel when the
diameter and diametral pitch is given, multiply the diameter in
inches by the diametral pitch. The product is the answer. Thus,
how many teeth in a wheel 36 inches diameter and of 3 diametral
pitch ? Here 36 x 3 = 108 = the number, of teeth sought. Or,
per contra, a wheel of 36 inches diameter has 108 teeth. What
is the diametral pitch ? 108 + 36 = 3 = the diametral pitch. Thus
it will be seen that, for determining the relative sizes of wheels,
this system is excellent from its simplicity. It also possesses the
advantage that, by adding two parts of the diametral pitch to the
pitch diameter, the outside diameter of the wheel or the diameter

of the addendum is obtained. For instance, a wheel containing
30 teeth of 10 pitch would be 3 inches diameter on the pitch circle
and 3% outside or total diameter. .

Again, a wheel having 40 teeth of 8 diametral pitch would have
a pitch circle diameter of 5 inches, because 40 + 8 = 5, and its
full diameter would be 5% inches, because the diametral pitch is
%, and this multiplied by 2 gives }, which added to the pitch circle
diameter of 5 inches makes 5} inches, which is therefore the
diameter of the addendum, or, in other words, the full diameter of
the wheel. )

Suppose now that a pair of wheels require to have pitch circles
of 5 and 8 inches diameter respectively, and that the arc pitch
requires to be, say, as near as may be % inch; to find a suitable
pitch and the number of teeth by the diametral pitch system we
proceed as follows :

In the following table are given various arc pitches, and the
corresponding diametral pitch.

Diametral Pitch. | Arc Pitch. Arc Pitch. | Diametral Pitch.
Inch.
2 157 75 79
2-25 139 15 2:09
2'g 125 1°4375% 2:18
2'75 1'14 1°375 228
3 roq 13125 2°39
3°5 890 125 2-51
4 '785 11875 2:65
5 *628 1'12§ 2'79
6 523 1-0625 2°96
7 *448 1°0000 314
8 '392 09375 335
9 *350 0875 359
10 314 08125 386
11 280 075, 419
12 +261 06875 457
14 224 0625 503
16 ‘196 05625 558
18 ‘174 05 628
20 *157 04375 718
22 143 0375 8:38
24 130 03125 10°00
26 120 02§ 12°56

From this table we find that the nearest diametral pitch that -
will correspond to an arc pitch of % inch is a diametral pitch of
8, which equals an arc pitch of ‘392, hence we multiply the pitch
circles (5 and 8,) by 8, and obtain 40 and 64 as the number of
teeth, the arc pitch being *392 of an inch. To find the number of
teeth and pitch by the arc pitch and circumference of the pitch
circle, we should require tofind the circumference of the pitchcircle,
and divide this by the nearest arc pitch that would divide the cir-
cumference without leaving a remainder, which would entail more
calculating than by the diametral pitch system.

The designation of pitch by the diametral pitch system is, how-
ever, not applied in practice to coarse pitches, nor to gears in
which the teeth are cast upon the wheels, pattern makers generally
preferring to make the pitch to some measurement that accords
with the divisions of the ordinary measuring rule.

Of two gear-wheels that which impels the other is termed the
driver, and sthat which receives motion from the other is termed
the driven wheel or follower ; hence in a single pair of wheels in
gear together, one is the driver and the other the driven wheel or
follower. But if there are three wheels in gear together, the
middle one will be the follower when spoken of with reference to
the first or prime mover, and the driver, when mentioned with
reference to the third wheel, which will be a follower. A series of
more than two wheels in gear together is termed a train of wheels
orof gearing. When the wheels in a train are in gear continuously,
so that each wheel, save the first and last, both receives and imparts
motion, it is a simple train, the first wheel being the driver, and
the last the follower, the others being termed intermediate wheels.
Each of these intermediates is a follower with reference to the
wheel that drives it, and a driver to the one that it drives. But
the velocity of all the wheels in the train is the same in fact per
second (or in a given space of time), although the revolutions in
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that space of time may vary; hence a simple train of wheels
transmits motion without influencing its velocity. To alter
the velocity (which is always taken at a point on the pitch
circle) the gearing must be compounded, as in Fig. 11, in
which A, B, ¢, E are four wheels in gear, B and C being com-
pounded, that is, so held together on the shaft D that both make
an equal number of revolutions in a given time. Hence the
velocity of ¢ will be less than that of B in proportion as the
diameter, circumference, radius, or number of teeth in C, varies
from the diameter, radius, circumference, or number of teeth (all
the wheels being supposed to have teeth of the same pitch) in B,
although the rotations of B and C are equal. Itis most convenient,
and therefore usual, to take the number of teeth, but if the teeth
on C (and therefore those on E also) were of different pitch from
those on B, the radius or diameters of the wheels must be taken
instead of the pitch, when the velocities of the various wheels are
to be computed. It is obvious that the compounded pair of wheels
will diminish the velocity when the driver of the compounded pair
(as c in the figure) is of less radius than the follower B, and con-
versely that the velocity will be increased when the driver is of
greater radius than the follower of the compound pair.

The diameter of the addendum or outer circle of a wheel has
no influence upon the velocity of the wheel. Suppose, for
example, that we have a pair of wheels of 3 inch arc or circular

Fig. 11.

pitch, and containing 20 teeth, the driver of the two making one
revolution per minute. Suppose the driven wheel to have fast
upon its shaft a pulley whose diameter is one foot, and that a
weight is suspended from a line or cord wound around this pulley,
. then (not taking the thickness of the line into account) each
rotation of the driven wheel would raise the weight 3°1416 feet
(that being the circumference of the pulley). Now suppose that
the addendum circle of either of the wheels were cut off down to
the pitch circle, and that they were again set in motion, then
each rotation of the driven wheel would still raise the weight
3'1416 feet as before.

It is obvious, however, that the addendum circle must be suffi-
ciently larger than the pitch circle to enable at least one pair of
teeth to be in continuous contact; that is to say, it is obvious
that contact between any two teeth must not cease before contact
between the next two has taken place, for otherwise the motion
would not be conveyed continuously. The diameter of the pitch
circle cannot be obtained from that of the addendum circle unless
the pitch of the teeth and the proportion of the pitch allowed for
the addendum be known. But if these be known the diameter of
the pitch circle may be obtained by subtracting from that of the
addendum circle twice thé amount allowed for the addendum of
the tooth.

Example.—A wheel has 19 teeth of 3 inch arc pitch; the ad-
dendum of the tooth or teeth equals 33; of the pitch, and its

addendum circle measures 19943 inches ; what is the diameter of
the pitch circle? Here the addendum on each side of the wheel
equals (% of 3 inches) = -g inches, hence the ‘g must be multiplied
by 2 for the two sides of the wheel, thus, ‘9 x 2 =18 Then,
diameter of addendum circle 19'943 inches less 1'8 inches =
18'143 inches, which is the diameter of the pitch circle.
Proof.—Number of teeth = 19, arc pitch 3, hence 19 x 3 =
57 inches, which, divided by 3°1416 (the proportion of the circum-

ference to the diameter) = 18143 inches.

If the distance between the centres of a pair of wheels that are
in gear be divided into two parts whose lengths are in the same
proportion one to the other as are the numbers of teeth in the
wheels, then these two parts will represent the radius of the pitch
circles of the respective wheels. Thus, suppose one -wheel to
contain 100 and the other 50 teeth, and that the distance between
their centres is 18 inches, then the pitch radius or pitch diameter
of one will be twice that of the other, because one contains twice
as many teeth as the other. In this case the radius of pitch
circle for the large wheel will be 12 inches, and that for the small
one 6 inches, because 12 added to 6 makes 18, which is the
distance between the wheel centres, and 12 is in the same pro-
portion to 6 that 100 is to 50.

A simple rule whereby to find the radius of the pitch circles of
a pair of wheels is as follows :—

Rule.—Divide number of teeth in the large wheel by the number
in the small one, and to the sum so obtained add 1. Take this
amount and divide it into the distance between the centres of the
wheels, and the result will be the radius of the smallest wheel.
To obtain the radius of the largest wheel subtract the radius
of the smallest wheel from the distance between the wheel centres.

Example.—Of a pair of wheels, one has 100 and the other
50 teeth, the distance between their centres is 18 inches; what
is the pitch radius of each wheel ?

Here 100 +- 50 = 2,and 2 + 1 = 3. Then 18 + 3 = 6, hence
the pitch radius of the small wheel is 6 inches. Then 18 — 6 =
12 = pitch radius of large wheel.

Example 2.—Of a pair of wheels one has 40 and the other
go teeth. The distance between the wheel centres is 32% inches ;

* what are the radii of the respective pitch circles? go + 40 =

2'25and 2°25 + 1 = 3°25. Then 32'5 + 3725 = 10 = pitch radius
of small wheel, and 32'5 — 10 = 225, which is the pitch radius of
the large wheel. ’

To prove this we may show that the pitch radii of the two
wheels are in the same proportion as their numbers of teeth,
thus :— .

Proof.—Radius of small wheel = 10 x 4 = 40
radius of large wheel = 22'5 x 4 = o0

Suppose now that a pair of wheels are constructed, having
respectively 50 and 100 teeth, and that the radii of their true
pitch circles are 12 and 6 respectively, but that from wear in
their journals or journal bearings this 18 inches (12 + 6 = 18)
between centres (or line of centres, as it is termed) has become
188 inches. Then the acting effective or operative radii of the
pitch circles will bear the same proportion to the 18% as the
numbers of teeth in the respective wheels, and will be 12°25 for the
large, and 6-125 for the small wheel, instead of 12 and 6, as
would bg the case were the wheels 18 inches apart. Working
this out under the rule given we have 100 + 50 = 2,and 2 + 1 = 3.
Then 18375 + 3 = 6°125 = pitch radius of small wheel, and
18375 — 6°125 = 12°25 = pitch radius of the large wheel.

The true pitch line of a tooth is the line or point where the face
curve joins the flank curve, and it is essential to the transmission
of uniform motion that the pitch circles of epicycloidal wheels
exactly coincide on the line of centres, but if they do not coincide
(as by not meeting or by overlapping each other), then a false
pitch circle becomes operative instead of the true one, and the
motion of the driven wheel will be unequal at different instants
of time, although the revolutions of the wheels will of course be in
proportion to the respective numbers of their teeth.

If the pitch circle is not marked on a single wheel and its arc
pitch is not known, it is practically a difficult matter to obtain
either the arc pitch or diameter of the pitch circle. If the wheel
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is a new one, and its teeth are of the proper curves, the pitch
circle will be shown by the junction of the curves forming the
faces with those forming the flanks of the teeth, because that is
the location of the pitch circle ; but in worn wheels, where from
play or looseness between the journals and their bearings, this
point of junction becomes rounded, it cannot be defined with
certainty.

In wheels of large diameter the arc pitch so nearly coincides

with the chord pitch, that if the pitch circle is not marked on the

wheel and the arc pitch is not known, the chord pitch is in
practice often assumed to represent the arc pitch, and the diameter
of the wheel is obtained by multiplying the number of teeth by
the chord pitch. This induces no error in wheels of coarse
pitches, because those pitches advance by } or } inch at a step,
and a pitch measuring about, say, 1} inch chord pitch, would be
known to be 1} arc pitch, because the difference between the
arc and chord pitch would be too minute to cause sensible error.
Thus the next coarsest pitch to 1 inch would be 14, or more often
11 inch, and the difference between the arc and chord pitch of
~ the smallest wheel would not amount to anything near } inch,
hence there would be no liability to mistake a pitch of 1} for
1 inch or vice versd. The diameter of wheel that will be large
enough to transmit continuous motion is diminished in proportion
as the pitch is decreased ; in proportion, also, as the wheel dia-
meter is reduced, the difference between the arc and chord pitch
increases, and further the steps by which fine pitches advance
are more minute (as$, %, % &c.). From these facts there is much
more liability to err in estimating the arc from the measured
chord pitch in fine pitches, hence the employment of diametral
pitch for small wheels of fine pitches is on this account also
very advantageous. In marking out a wheel the chord pitch
will be correct if the pitch circle be of correct diameter and be
- divided off into as many points of equal division (with compasses)
as there are to be teeth in the wheel. We may then mark from
these points others giving the thickness of the teeth, which will
make the spaces also correct. But when the wheel teeth are to
be cut in a machine out of solid metal, the mechanism of the
machine enables the marking out to be dispensed with, and all
that is necessary is to turn the wheel to the required addendum
diameter, and mark the pitch circle. The following are rules for
the purposes they indicate.

The circumference of a circle is obtained by multiplying its
diameter by 3°1416, and the diameter may be obtained by dividing
the circumference by 3-1416.

The circumference of the pitch circle divided by the arc pitch
gives the number of teeth in the wheel.

The arc pitch multiplied by the number of teeth in the wheel
gives the circumference of the pitch circle.

Gear-wheels are simply rotating levers transmitting the power
they receive, less the amount of friction necessary to rotate them
under the given conditions. All that is accomplished by a simple
train of gearing is, as has been said, to vary the number of revolu-
tions, the speed or velocity measured in feet moved through per
minute remaining the same for every wheel in the train. But
in a compound train of gears the speed in feet per minute, as
well as the revolutions, may be varied by means of the com-
pounded pairs of wheels. In either a simple or a compound train
of gearing the power remains the same in amount for every wheel
in the train, because what is in a compound train lost in velocity
is gained in force, or what is gained in velocity is lost in force,
the word force being used to convey the idea of strain, pressure,
or pull.

_In Fig. 12, let A, B, and c represent the pitch circles of three
gears of which A and B are in gear, while ¢ is compounded with
B; let E be the shaft of A, and G that for Band c. Let A be 6o
inches, B=301nches, and c=4o inches in diameter. Now suppose
that shaft E suspends from its perimeter a weight of 50 Ibs., the
shaft being 4 inches in diameter. Then this weight will be at a
leverage of 2 inches from the centre of E and the 5o must be
multiplied by 2, making 100 lbs. at the centre of E. Then at the
perimeter of A this 100 will become one-thirtieth of one hundred,
because from the centre to the perimeter of Ais 30. One-thirtieth
of 100 is 33% lbs., which will be the force exerted by A on the

perimeter of B. Now from the perimeter of B to its centre (or
in other words its radius) is 15 inches, hence the 3#% Ibs. at
its perimeter will become fifteen times as much at the centre G of
B, and 3:3% x 15=497%% 1bs. From the centre G to the perimeter
of ¢ being 20 inches, the 497 lbs. at the centre will be only one-
twentieth of that amount at the perimeter of C, hence 49%%;+20=
2;4% Ibs., which is the amount of force at the perimeter of c.

Here we have treated the wheels as simple levers, dividing the
weight by the length of the levers in all cases where it is trans-
mitted from the shaft to the perimeter, and multiplying it by the
length of the lever when it is transmitted from the perimeter of
the wheel to the centre of the shaft. The precise same result will
be reached if we take the diameter of the wheels or the number of
the teeth, providing the pitch of the teeth on all the wheels is
alike.

Suppose, for example, that A has 6o teeth, B has 30 teeth, and
has 40 teeth, all being of the same pitch. Suppose the 50 Ib.
weight be suspended as before, and that the circumference of the
shaft be equal to that of a pinion having 4 teeth of the same
pitch as the wheels. Then the 50 multiplied by the 4 becomes 200,
which divided by 6o (the number of teeth on A) becomes 338;,
which multiplied by 30 (the number of teeth on B) becomes 99:%%,

60 inches in diameter 40 inches in diametes

30inches in digmeten

Fig, 12,

which divided by 40 (the number of teeth on C) becomes 2% 1bs.
as before. _

It may now be explained why the shaft was taken as equal to
a pinion having 4 teeth. Its diameter was taken as 4 inches and
the wheel diameter was taken as being 60 inches, and it was
supposed to contain 60 teeth, hence there was 1 tooth to each
inch of diameter, and the 4 inches diameter of shaft was there-
fore equal to a pinion having 4 teeth. From this we may perceive
the philosophy of the rule that to obtain the revolutions of wheels
we multiply sthe given revolutions by the teeth in the driving
wheels and divide by the teeth in the driven wheels.

Suppose that A (Fig. 13) makes 1 revolution per minute, how
many will ¢ make, A having 6o teeth, B 30 teeth, and C 4o teeth ?
In this case we have but one drivingwheel A, and one driven
wheel B, the driver having 60 teeth, the driven 30, hence 60 =+
30 = 2, equals revolutions of B and also of c, the two latter being
on the same shaft.

It will be observed then that the revolutions are in the same
proportion as the numbers of the teeth or the radii of the wheels,
or what is the same thing, in the same proportion as their
diameters. The number of teeth, however, is usually taken as
being easier obtained than the diameter of the pitch circles, and
easier to calculate, because the teeth will be represented by a
whole number, whereas the diameter, radius, or circumference,

‘will generally contain fractions.
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Suppose that the 4 wheels in Fig. 14 have the respective
numbers of teeth marked beside them, and that the upper one
having 40 teeth makes 60 revolutions per minute, then we may
obtain the revolutions of the others as follows :—

Teeth in

Revolu- Teeth in Teeth in Teeth in
tions. first driver.  first driven. second driver. second driven.
60 x 40 + 60 x 20 + 120 = 6%

and a remainder of the reciprocating decimals. We may now
prove this by reversing the question, thus. Suppose the 120 wheel
to make 6% revolutions per minute, how many will the 40 wheel
make ?

Revolu- Teeth in Teeth in Teeth in Teeth in
tions. first driver. first driven. second driver. second driven.
. - - - 9 —
666 x 120 + 20 x 60 + 40 = 50:%5 =

revolutions of the 40 wheel, the discrepancy of 35 being due to
the 6°66 leaving a remainder and not therefore being absolutely
correct.

That the amount of power transmitted by gearing, whether
compounded or not, is equal throughout every wheel in the train,
may be shown as follows :—

Referring again to Fig. 10, it has been shown that with a 50 1b.

Fig. 13.

weight suspended from a 4 inch shaft E, there would be 30385 1bs.
at the perimeter of A. Now suppose a rotation be made,
then the 50 Ib. weight would fall a distance equal to the circum-
ference of the shaft, which is (3.1416 x 4 = 124%%) 1238 inches.
Now the circumference of the wheel is (60 dia. x 31416 = 18845,
cir.) 188#4% inches, which is the distance through which the 3%

Ibs. would move during one rotation of A. Now 3°33 Ibs. moving
through 18849 inches represents the same amount of power as
does 50 Ibs. moving through a distance of 12°56 inches, as may
be found by converting the two into inch lbs. (that is to say, into
the number of inches moved by 1 1b.), bearing in mind that there
will be a slight discrepancy due to the fact that the fractions *33
in the one case, and 356 in the other are not quite correct. Thus:

18849 inches x 3°33 lbs. = 62767 inch Ibs., and
12.56 ”» x 50 5, = 628 ”» ”»

Taking the next wheels in Fig. 12, it has been shown that the
333 lbs. delivered from A to the perimeter of B, becomes 2°49 lbs.
at the perimeter of €, and it has also. been shown that C makes
two revolutions to one of A, and its diameter being 40 inches, the
distance this 2°49 lbs. will move through in one revolution of A

will therefore be equal to twice its circumference, which is (40
dia. x 3°1416 = 125°666 cir., and 125°666 x 2 = 251°332) 251'332
inches. Now 2°49 lbs. moving through 251°332 gives when
brought to inch Ibs. 627.67 inch Ibs., thus 251°332 x 2'49 = 627°67.
Hence the amount of power remains constant, but is altered in
form, merely being converted from a heavy weight moving a short
distance, into a lighter one moving a distance exactly as much
greater as the weight or force is lessened or lighter.

Gear-wheels therefore form a convenient method of either
simply transmitting motion or power, as when the wheels are

Fig. 14.

all of equal diameter, or of transmitting it and simultaneously
varying its velocity of motion, as when the wheels are compounded
either to reduce or increase the speed or velocity in feet. per
second of the prime mover or first driver of the train or pair, as
the case may be.

In considering the action of gear-teeth, however, it sometimes
is more convenient to denote their motion by the number of
degrees of angle they move through during a certain portion of a
revolution, and to refer to their relative velocities in terms of the
ratio or proportion existing between their velocities. The first of

Fig. 15.

these is termed the angular velocity, or the number of degrees of
angle the wheel moves through during a given period, while the
second is termed the velocity ratio of the pair of wheels. Let it
be supposed that two wheels of equal diameter have contact at
their perimeters so that one drives the other by friction without
any slip, then the velocity of a point on the perimeter of one will
equal that of a point on the other. Thus in Fig. 15 let A and B
represent the pitch circles of two wheels, and ¢ an imaginary line
joining the axes of the two wheels and termed the line of centres.
Now the pcint of contact of the two wheels will be on the line of



THE TEETH OF GEAR-WHEELS. \ 7

centres as at D, and if a point or dot be marked at D and motion
be imparted from A to B, then when each wheel has made a
quarter revolution the dot on A will have arrived at E while that
on B will have arrived at F.© As each wheel has moved through
one quarter revolution, it has moved through go° of angle, because
in the whole circle there is 360°, one quarter of which is 9o°, hence
instead of saying that the wheels have each moved through one
quarter of a revolution we may say they have moved through an
angle of go°, or, in other words, their angular velocity has, during
this period, been go°. And as both wheels have moved through
an equal number of degrees of angle their velocity ratio or pro-
portion of velocity has been equal.

Obviously then the angular velocity of a wheel represents a
portion of a revolution irrespective of the diameter of the wheel,
while the velocity ratio represents the diameter of one in propor-
tion to that of the other irrespective of the actual diameter of
either of them.

Now suppose that in Fig. 16 A is a wheel of twice the diameter
of B; that the two are free to revolve about their fixed centres,
but that there is frictional contact between their perimeters at the
line of centres sufficient to cause the motion of one to be imparted
to the other without slip or lost motion, and that a point be marked
on both wheels at the point of contact D. Now let motion be
communicated to A until the mark that was made at D has moved
one-eighth of a revolution and it will have moved through an
eighth of a circle, or 45°. But during this motion the mark on B
will have moved a quarter of a revolution, or through an angle of

Fig. 16.

go°(which is one quarter of the 360° that there are in the whole
circle). The angular velocities of the two are, therefore, in the
same ratio as their diameters, or two to one, and the velocity ratio
isalso two to one. The angular velocity of each is therefore the
number of degrees of angle that it moves through in a certain
portion of a revolution, or during the period that the other wheel
of the pair makes a certain portion of a revolution, while the
velocity ratio is the proportion existing between the velocity of
one wheel and that of the other; hence if the diameter of one
only of the wheels be changed, its angular velocity will be changed
and the velocity ratio of the pair will be changed. The velocity
ratio may be obtained by dividing either the radius, pitch,
diameter, or number of teeth of one wheel into that of the other.

Conversely, if a givenvelocity ratio is to be obtained, the radius,
diameter, or number of teeth of the driver must bear the same
relation to the radius,diameter, or number of teeth of the follower,
as the velocity of the follower is desired to bear to that of the
driver.

If a pair of wheels have an equal number of teeth, the same
pairs of teeth will come into action at every revolution; but if of two
wheels one is twice as large as the other, each tooth on the small
wheel will come into action twice during each revolution of the
large one, and will work during each successive revolution with
the same two teeth on the large wheel; and an application of the
principle of the hunting tooth is sometimes employed in clocks to
prevent the overwinding of their springs, the device being shown
in Fig. 17, which is from ¢« Willis’ Principles of Mechanism.”’

For this purpose the winding arbor ¢ has a pinion A of 19 teeth

T

fixed to it close to the front plate. A pinion B of 18 teeth is
mounted on a stud so as to be in gear with the former. A radial
plate ¢ D is fixed to the face of the upper wheel A, and a similar
plate F E to the lower wheel B. These plates terminate outward
in semicircular noses D, E, so proportioned as to cause their
extremities to abut against each other, as shown in the figure,
when the motion given to the upper arbor by the winding has
brought them into the position of contact. The clock being now
wound up, the winding arbor and wheel A-will begin to turn in
the opposite direction. ~When its first complete rotation is
effected the wheel B will have gained one tooth distance from the
line of centres, so as to place the stop D in advance of E and
thus avoid a contact with E, which would stop the motion. As
each turn of the upper wheel increases the distance of the stops,
it follows from the principle of the hunting cog, that after eighteen
revolutions of A and nineteen of B the stops will come together
again and the clock be prevented from running down too far.
The winding key being applied, the upper wheel A will be rotated
in the opposite direction, and the winding repeated as above.
Thus the teeth on one wheel will wear to imbed one upon the
other. On the other hand the teeth of the two wheels may be
of such numbers that those on one wheel will not fall into gear
with the same teeth on the other except at intervals, and thus
an inequality on any one tooth is subjected to correction by all
the teeth in the other wheel. When a tooth is added to the

number of teeth on a wheel to effect this purpose it is termed a
hunting cog, or hunting tooth, because if one wheel have a tooth
less, then any two teeth which meet in the first revolution are
distant, one tooth in the second, two teeth in the third, three in
the fourth, and so on. The odd tooth is on this account termed
a hunting tooth.

It is obvious then that the shape or form to be given to the
teeth must, to obtain correct results, be such that the motion of
the driver will be communicated to the follower with the velocity
due to the relative diameters of the wheels at the pitch circles,
and since thg teeth move in the arc of a circle it is also obvious
that the sides of the teeth, which are the only parts that come
into contact, must be of same curve. The nature of this curve
must be such that the teeth shall possess the strength necessary
to transmit the required amount of power, shall possess ample
wearing surface, shall be as easily produced as p0551b1e for all
the varying conditions, shall give as many teeth in constant
contact as possible, and shall, as far as possible, exert a pressure
in a direction to rotate the wheels without inducing under wear
upon the journals of the shafts upon which the wheels rotate.
In cases, however, in which some of these requirements must be

- partly sacrificed to increase the value of the others, or of some

of the others, to suit the special circumstances under which the
wheels are to operate, the selection is left to the judgment of
the designer, and the considerations which should influence his
determinations will appear hereafter.
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Modern practice has accepted the curve known in general
terms as the cycloid, as that best filling all the requirements of
wheel teeth, and this curve is employed to produce two distinct
forms of teeth, epicycloidal and involute. In epicycloidal teeth
the curve forming the face of the tooth is designated an epicy-
cloid, and that forming the flank an hypocycloid. An epicycloid
may be traced or generated, as it is termed, by a point in the
circumference of a circle that rolls without slip upon the circum-
ference of another circle. . Thus, in Fig. 18, A and B represent
two wooden wheels, A having a pencil at P, to serve as a tracing
or marking point. Now, if the wheels are laid upon a sheet of

Fig. 18.

paper and while holding B in a fixed position, roll A in contact
with B and let the tracing point touch the paper, the point P will
trace the curve C Cc. Suppose now the diameter of the base
circle B to be infinitely large, a portion of its circumference may
be represented by a straight line, and the curve traced by a point
on the circumference of the generating circle as it rolls along
the base line B is termed a cycloid. Thus, in Fig. 19, B is the
base line, A the rolling wheel or generating circle, and € C the
cycloidal curve traced or marked by the point D when A is rolled
along B. If now we suppose the base line B to represent the
pitch line of a rack, it will be obvious that part of the cycloid at

Fig. 19.

one end is suitable for the face on one side of the tooth, and a
part at the other end is suitable for the face of the other side of
the tooth.

A hypocycloid is a curve traced or generated by a point on the
circumference of a circle rolling within and in contact (without
slip) with another circle. Thus, in Fig. 20, A represents a wheel
in contact with the internal circumference of B, and a point on
its circumference will trace the two curves, C C, both curves
starting from the same point, the upper having been traced by
rolling the generating circle or wheel A in one direction and the
lower curve by rolling it in the opposite direction.

To demonstrate that by the epicycloidal and hypocycloidal
curves, forming the faces and flanks of what are known as epicy-
cloidal teeth, motion may be communicated from one wheel to
another with as much uniformity as by frictional contact of their
circumferential surfaces, let A, B, in Fig. 21, represent two plain

wheel disks at liberty to revolve about their fixed centres, and
let C C represent a margin of stiff white paper attached to the
face of B so as to revolve with it. Now suppose that A and B are
in close contact at their perimeters at the point G, and that there
is no slip, and that rotary motion commenced when the point E
(where as tracing point a pencil is attached), in conjunction with
the point F, formed the point of contact of the two wheels, and

Fig. 20,

continued until the points E and F had arrived at their respective
positions as shown in the figure ; the pencil at E will have traced
upon the margin of white paper the portion of an epicycloid
denoted by the curve E F; and as the movement of the two wheels
A, B, took place by reason of the contact of their circumferences,
it is evident that the length of the arc E G must be equal to that

Fig. 21.

of the arc G F, and that the motion of A (supposing it to be the
driver) would be communicated uniformly to B.

Now suppose that the wheels had been rotated in the opposite
direction and the same form of curve would be produced, but it
would run in the opposite direction, and these two curves may be
utilized to form teeth, as in Fig. 22, the points on the wheel A
working against the curved sides of the teeth on B.

To render such a pair of wheels useful in practice, all that is
necessary is to diminish the teeth on B without altering the
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nature of the curves, and increase the diameter of the points on
A, making them into rungs or pins, thus forming the wheels into
what is termed a wheel and lantern, which are illustrated in
Fig. 23. -

A represents the pinion (or lantern), and B the wheel, and C,C,
the primitive teeth reduced in thickness to receive the pins on

Fig. 22.

A. This reduction we may make by setting a pair of compasses
to the radius of the rung and describing half-circles at the bottom
of the spaces in B. We may then set a pair of compasses to the
curve of ¢, and mark off the faces of the teeth of B to meet the

Fig. 23.

half-circles at the pitch line, and reduce the teeth heights so as
to leave the points of the proper thickness; having in this opera-
tion maintained the same epicycloidal curves, but brought them
closer together and made them shorter. It is obvious, however,

Fig. 24.

that such a method of communicating rotary motion is unsuited

to the transmission of much power; because of the weakness of,

and small amount of wearing surface on, the points or rungs in A.

In place of points or rungs we may have radial lines, these
VOL 1.—2.

lines, representing the surfaces of ribs, set equidistant on the
radial face of the pinion, as in Fig:. 24. To determine the
epicycloidal curves for the faces of teeth to work with these radial
lines, we may take a generating circle C, of half the diameter of
A, and cause it to roll in contact with the internal circumference
of A, and a tracing point fixed in the circumference of ¢ will

Fig. 25.

draw the radial lines shown upon A. The circumstances will not
be altered if we suppose the three circles, A, B, C, to be movable
about their fixed centres, and let their centres be in a straight
line; and if, under these circumstances, we suppose rotation to
be imparted to the three circles, through frictional contact of
their perimeters, a tracing point on the circumference of ¢ would
trace the epicycloids shown upon B and the radial lines shown
upon A, evidencing the capability of one to impart uniform rotary
motion to the other. )

To render the radial lines capable of use we must let them be
the surfaces of lugs or projections on the face of the wheel, as
shown in Fig. 25 atD, E, &c., or the faces of notches cut in the
wheel as at F, G, H, &c., the metal between F and G forming a
tooth J, having flanks only. The wheel B has the curves of each

Fig. 26.

tooth brought closer together to give room for the reception of the
teeth upon A. We have here a pair of gears that possess suffi-
cient strength and are capable of working correctly in either
direction.

But the form of tooth on one wheel is conformed simply to suit
those on the other, hence, neither two of the wheels A, nor would -
two of B, work correctly together.

They may be qualified to do so, however, by simply adding to
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the tops of the teeth on A, teeth of the form of those on B, and
adding to those on B, and within the pitch circle, teeth corres-
ponding to those on A, as in Fig. 26, where at K’ and J' teeth are
provided on B corresponding to J and K on A, while on A there
are added teeth O',N', corresponding toO,N,on B, with the result
that two wheels such as A or two such as B would work correctly
together, either being the driver or either the follower, and
rotation may occur in either direction. In this operation we
have simply added faces to the teeth on A, and flanks to those on
B, the curves being generated or obtained by rolling the gene-
rating, or curve marking, circle C upon the pitch circles P and P.
Thus, for the flanks of the teeth of A, C is rolled upon, and within
the pitch circle P of A; while for the face curves of the same
teeth C is rolled upon, but without or outside of P. Similarly for
the teeth of wheel B the generating circle C is rolled within P’ for
the flanks and without for the faces. With the curves rolled or
produced with the same diameter of generating circle the wheels
will work correctly together, no matter what their relative diameter
may be, as will be shown hereafter.

to wheel Q a pencil whose point is at 7. If then rotation be
given to @ « in the direction of the arrow s, all three wheels will
rotate in that direction as denoted by their respective arrows s.

Assume, then, that rotation of the three has occurred until the
pencil point at 72 has arrived at the point 72, and during this
period of rotation the point 7z will recede from the line of centres
A B, and will also recede from the arcs or lines of the two pitch
circles @ @, 4 5. The pencil point being capable of marking its
path, it will be found on reaching 7z to have marked inside the
pitch circle 4 & the curve denoted by the full line 72 x, and
simultaneously with this curve it has marked another curve out-
side of @ a, as denoted by the dotted line ¥ »2. These two
curves being marked by the pencil point at the same time
and extending from y to 72, and x also to z. They are pro-
longed respectively to # and to K for clearness of illustration
only.

The rotation of the three wheels being continued, when the
pencil point has arrived at O it will have continued the same
curves as shownat O /, and O g, curve O f being the same as

—_—

L

Fig. 27.

In this demonstration, however, the curves for the faces of the
teeth being produced by an operation distinct from that employed
to produce the flank curves, it is not clearly seen that the curves
for the flanks of one wheel are the proper curves to insure a
uniform velocity to the other. This, however, may be made clear
as follows :—

In Fig. 27 let @ @ and 4 & represent the pitch circles of two
wheels of equal diameters, and therefore having the same number
of teeth. On the left, the wheels are shown with the teeth in,
while on the right-hand side of the line of centres A B, the
wheels are shown blank ; & « is the pitch line of one wheel, and
b b that for the other. Now suppose that both wheels are capable
of being rotated on their shafts, whose centres will of course be
on the line A B, and suppose a third disk, @, be also capable of
rotation upon its centre, C, which is also on the line A B. Let
these three wheels have sufficient contact at their perimeters at
the point 7, that if one be rotated it will rotate both the others
(by friction) without any slip or lost motion, and of course all
three will rotate at an equal velocity. Suppose that there is fixed

m % placed in a new position, and 0 & being the same as 7 9,
but placed in a new position. Now since both these curves (0 #
and 0 g) were marked by the one pencil point, and at the same
time, jt follows that at every point in its course that point must
have touched both curves at once. Now the pencil point having
moved around the arc of the circle Q from 7 to 7z, it is obvious
that the two curves must always be in contact, or coincide with
each other, at some point in the path of the pencil or describing
point, or, in other words, the curves will always touch each other
at some point on the curve of Q, and between 7z and 0. Thus
when the pencil has arrived at 2, curve s y touches curve X x
at the point 72, while when the pencil had arrived at point 0, the
curves O f and 0 g will touch at 0. Now the pitch circles a a
and & 4, and the describing circle Q, having had constant and
uniform velocity while the traced curves had constant contact at
some point in their lengths, it is evident that if instead of being
mere lines, »2 y was the face of a tooth on @ @, and »2 x was the
flank ot atoothon & &, the same uniform motion may be trans-
mitted from @ &, to & &, by pressing the tooth face »2 y against
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the tooth flank » x. Let it now be noted that the curve y m
corresponds to the face of a tooth, as say the face E of a tooth on
a a, and that curve x 7z corresponds to the flank of a tooth on
b b, as say to the flank F, short portions only of the curves being
used for those flanks. If the direction of rotation of the three
wheels was reversed, the same shape of curves would be produced,
but they would lie in an opposite direction, and would, therefore,
be suitable for the other sides of the teeth. In this case, the
contact of tooth upon tooth will be on the other side of the line of
centres, as at some point between 7 and Q.

In this illustration the diameter of the rolling or describing
circle Q, being less than the radius of the wheels @ @ or 4 5, the
flanks of the teeth are curves, and the two wheels being of
the same diameter, the teeth on the two are of the same shape
But the principles governing the proper formation of the curve
remain the same whatever be the conditions. Thus in Fig. 28
are segments of a pair of wheels of equal diameter, but the de-
scribing, rolling, or curve-generating circle is equal in diameter

~L

Fig. 28.

to the radius of the wheels.  Motion is supposed to have occurred
in the direction of the arrows, and the tracing point to have
moved from 7 to #»2. During this motion it will have marked a
curve y 2, a portion of the y end serving for the face of a
tooth on one wheel, and also the line # x, a continuation of
which serves for the flank of a tooth on the other wheel. In Fig.
29 the pitch circles only of the wheels are marked, @ & being
twice the diameter of 4 4, and the curve-generating circle being
equalin diameter to the radius of wheel 4 6. Motion is assumed
to have occurred until the pencil point, starting from 7, had arrived
at 0, marking curves suitable for the face of the teeth on one
wheel and for the flanks of the other as before, and the contact of
tooth upon tooth still, at every point in the path of the teeth,
occurring at some point of thearc 7 0. Thus when the point had
proceeded as far as point 72 it will have marked the curve yand
the radial line x, and when the point had arrived at o, it will have
prolonged 7z y into 0 g and x into 0 £, while in either position the
point is marking both lines. The velocities of the wheels remain
the same notwithstanding their different diameters, for the arc 7 ¢

must obviously (if the wheels rotate without slip by friction of their

surfaces while the curves are traced)be equal in length to the arc
7 f or the arc 7 o.

Fig. 29.

In Fig. 30 @ @ and & & are the pitch circles of two wheels as
before, and ¢ ¢ the pitch circle of an annular or internal gear,
and D is the rolling or describing circle. When the describing

Fig.-30.

point arrived at #z, it will have marked the curve y for the face
of a tooth on 2 a, the curve x for the flank of a tooth on & 4, and
the curve e for the face of a tooth on the internal wheel ¢ ¢.
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Motion being continued 72 y will be prolonged to o g, while
simultaneously x will be extended into o f and ¢into %o, the
velocity of all the wheels being uniform and equal. Thus the
arcs » v, n_f, and 2 g, are of equal length.

Fig. 31.

In Fig. 31 is shown the case of a rack and pinion ; @ & is the
pitch line of the rack, 4 & that of the pinion, A B at a right angle
to @ @, the line of centres, and D the generating circle. The
wheel and rack are shown with teeth 7 on one side simply for

TS

rolled around & until it had reached the position marked 1, then
it will have marked the curve from e to 7, a part of this curve
serving for the face of tooth ¢. Now let the rolling circle be
placed within the pitch circle @ @ and its pencil point z be set to
e, then, on being rolled to position 2, it will have marked the
flank of tooth ¢. For the other wheel suppose the rolling wheel
or circle to have started from / and rolled to the line of centres
as in the cut, it will have traced the curve forming the face of the
tooth &.  For the flank of & the rolling circle or wheel is placed
within & &, its tracing point set at _/ on the pitch circle, and on
being rolled to position 3 it will have marked the flank curve.
The curves thus produced will be precisely the same as those
produced by rotating all three wheels about their axes, as in our
previous demonstrations.

The curves both for the faces and for the flanks thus obtained
will vary in their curvature with every variation in either the
diameter of the generating circle or of the base or pitch circle of
the wheel. Thus it will be observable to the eye that the face
curve of tooth ¢ is more curved than that of &, and also that the
flank curve of & is more spread at the root than is that for ¢,
which has in this case resulted from the difference between the
diameter of the wheels @ @ and 4 4. But the curves obtained by
a given diameter of rolling circle on a given diameter of pitch
circle will be correct for any pitch of teeth that can be used upon
wheels having that diameter of pitch circle. Thus, suppose we
have a curve obtained by rolling a wheel of 20 inches circum-
ference on a pitch circle of 40 inches circumference—now a wheel
of 40 inches in circumference may contain 20 teeth of 2 inch arc
pitch, or 10 teeth of 4 inch arc pitch, or 8 teeth of 5 inch
arc pitch, and the curve may be used for either of those pitches.

Fig. 32.

clearness of illustration. The pencil point 7 will, on arriving
at 7z, have traced the flank curve x and the curve y for the face
of the rack teeth.

It has been supposed that the three circles rotated together by
the frictional contact of their perimeters on the line of centres,
but the circumstances will remain the same if the wheels remain
at rest while the generating or describing circle is rolled around
them. Thus in Fig. 32 are two segments of wheels as before, ¢
representing-the centre of a tooth on @ @, and & representing the
centre of a tooth on 4 4. Now suppose that a generating or rolling
circle be placed with its pencil point at e, and that it then be

If we trace the path of contact of each tooth, from the moment
it takes until it leaves contact with a tooth upon the other wheel,
we shall find that contact begins at the point where the flank of
the tooth on the wheel that drives or imparts motion to the other
wheel, meets the face of the tooth on the driven wheel, which will
always be where the point of the driven tooth cuts or meets the
generating or rolling circle of the driving tooth. Thus in F]g 33
are represented segments of two spur-wheels marked respectively
the driver and the driven, their generating circles being marke~d
at ¢ and G, and X X representing the line of centres. Tooth A1is
shown in the position in which it commences its contact with tooth
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B atc. Secondly, we shall find that as these two teeth approach
the line of centres X, the point of contact between them moves or
takes place along the thickened arc or curve C X, or along the
path of the generating circle G.

Thus we may suppose tooth D to be another position of tooth 4,
the contact being at F, and as motion was continued the contact
would pass along the thickened curve until it arrived at the line
of centres X. Now since the teeth have during this path of contact
approached the line of centres, this part of the whole arc of action
or of the path of contact is termed the arc of approach. After
the two teeth have passed the line of centres X, the path of contact
of the teeth will be along the dotted arc from X to L, and as the
teeth are during this period of motion receding from X this part
of the contact path is termed the arc of recess.

That contact of the teeth would not occur earlier than at ¢ nor
later than at L, is shown by the dotted teeth sides ; thus A and B
would not touch when in the position denoted by thedotted teeth, nor
would teeth 1 and K if in the position denoted by their dotted lines.

If we examine further into this path of contact we find that
throughout its whole path the face of the tooth of one wheel has

13

It is laid down by Professor Willis that the motion of a pair of
gear-wheels is smoother in cases where the path of contact begins
at the line of centres, or, in other words, when there is no arc of
approach; and this action may be secured by giving to the
driven wheel flanks only, as in Fig. 34, in which the driver has
fully developed teeth, while the teeth on the driven have no
faces.

In this case, supposing the wheels to revolve in the direction of
arrow P, the contact will begin at the line of centres X, move or pass
along-the thickened arc and end at B, and there will be contact
during the arc of recess only. Similarly, if the direction of motion

- bereversed as denoted by arrow Q, the driver will begin contact at

%, and cease contact at H, having, as before, contact during the
arc of recess only."

But if the wheel W were the driver and v the driven, then these
conditions would be exactly reversed. Thus, suppose this to be
the case and the direction of motion be as denoted by arrow P, the
contact would occur during the arc of approach, from H to X,
ceasing at X.

‘Or if W were the driver, and the direction of motlon was as

/// 722127
<L K

X

Fig.

contact with the flank only of the tooth of the other wheel, and
also that the flank only of the driving-wheel tooth has contact
before the tooth reaches the line of centres, while the face of only
the driving tooth has contact after the tooth has passed the line
of centres.

Thus the flanks of tooth A and of tooth D are in driving contact
with the faces of teeth B and E, while the face of tooth H is in
contact with the flank of tooth 1.

These conditions will always exist, whatever be the diameters
of the wheels, their number of teeth or the diameter of the generat-
ing circle. That is to say, in fully developed epicycloidal teeth,
no matter which of two wheels is the driver or which the driven
wheel, contact on the teeth %f the driver will always be on the
tooth flank during the arc of approach and on the tooth face
during the arc of recess; while on the driven wheel contact
during the arc of approach wili be on the tooth face only, and
during the arc of recess on the tooth flank only, it being borne in
mind that the arcs of approach and recess are reversed in location
if the direction of revolution be reversed. Thus if the direction of
wheel motion was opposite to that denoted by the arrows in Fig.
33 then the arc of approach would be from M to X, and the arc of
recess from X to N.

33.

denoted by Q, then, again, the path of contact would be during
the arc of approach only, beginning at B and ceasing at X, as
denoted by the thickened arc B X.

The action of the teeth will in either case serve to give a theo-
retically perfect motion so far as uniformity of velocity is con-
cerned, or, in other words, the motion of the driver will be trans-
mitted with perfect uniformity to the driven wheel. It will be
observed, however, that by the removal of the faces of the teeth,
there are a less number of teeth in contact at each instant of time ;
thus, in Fig. 33 there is driving contact at three points, C, F, and
7, while in Fig. 34 there is driving contact at two points only.
From the fact that the faces of the teeth work with the flanks
only, and that one side only of the teeth comes into action, it
becomes apparent that each tooth may have curves formed by
four different diameters of rolling or generating circles and yet
work correctly, no matter which wheel be the driver, or which the
driven wheel or follower, or in which direction motion occurs.
Thus in Fig. 35, suppose wheel V to be the driver, having motion
in the direction of arrow P, then faces A on the teeth of v will
work with flanks B of the ‘teeth on W, and so long as the curves
for these faces and flanks are obtained with the same diameter of
rolling circle, the action of the teeth will be correct, no matter
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what the shapes of the other parts of the teeth. Now suppose
that v still being the driver, motion occurs in the other direction
as denoted by Q, then-the faces C of the teeth on Vv will drive the
flanks D of the teeth on W, and the motion will again be correct,
providing that the same diameter (whatever it may be) of rolling
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different diameters of rolling circles may be used upon a pair of
wheels, giving teeth-forms that will fill all the requirements so far
as correctly transmitting motion is concerned. In the case of a
pair of wheels having an equal number of teeth, so that each tooth
on one wheel will always fall into gear with the same tooth on the
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Driver
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Driven
W

X

Fig. 34.

N

circle be used for these faces and flanks, irrespective, of course, of | other wheel, every tooth may have its individual curves differing

what diameter of rolling circle is used for any other of the teeth
curves. Now suppose that W is the driver, motion occurring in
_ the direction of P, then faces E will drive flanks F, and the motion

from all the others, providing that the corresponding teeth on the
other wheel are formed to match them by using the same size of
rolling circle for each flank and face that work together.

Fig. 35.

~will be correct as before if the curves E and ¥ are produced with
the same diameter of rolling circle. Finally, let W be the driving
wheel and motion occur in the direction of Q, and faces G will
. drive flanks H, and yet another diameter of rolling circle may be
used for these faces and flanks. Here then it is shown that four

It is obvious, however, that such teeth would involve a great
deal of labor in their formation and would possess no advantage,
hence they are not employed. It is not unusual, however, in a
pair of wheels that are to gear together and that are not intended
to interchange with other wheels, to use such sizes as will give to
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both wheels teeth having radial flanks; which is done by using
tor the face of the teeth on the largest wheel of the pair and for
tne flanks of the teeth of the smallest wheel, a generating circle
equal in diameter to the radius of the smallest wheel, and for the
taces of the teeth of the small wheel and the flanks of the teeth of

M \

the large one, a generating circle whose diameter equals the
radius of the large wheel.

It will now be evident that if we have planned a pair or a train
of wheels we may find how many teeth will be in contact for any
given pitch, as follows. In Fig. 36 let A, B, and C, represent three
blanks for gear-wheels whose addendum circles are M, Nand O ; P
representing the pitch circles, and Q representing the circles for
the roots of the teeth. Let Xand Y represent the lines of centres,
and G, H, I and K the generating or rolling circle, whose centres
are on the respective lines of centres—the diameter of the gene-
rating circle being equal to the radius of the pinion, as in the
Willis system, then, the pinionMbeing the driver, and the wheels
revolving in the direction denoted by the respective arrows, the
arc or path of contact for the first pair will be from point D, where
‘the generating circle G crosses circle N to E, where generating
circle H crosses the circle M, this path being composed of two
arcs of a circle.  All that is necessary, therefore, is to set the
compasses to the pitch the teeth are to have and step them along
these arcs, and the number of steps will be the number of teeth
that will be in contact. Similarly, for the second pair contact
will begin at R and end at S, and the compasses applied as before
(from R to s) along the arc of generating circle I to the line of
centres, and thence along the arc of generating circle K to s, will
give in the number of steps, the number of teeth that will be in
contact. If for any given purpose the number of teeth thus
found to be in contact is insufficient; the pitch may be made
finer. : ‘

When a wheel is intended to be formed to work correctly with
any other wheel having the same pitch, or when there are more
than two wheels in the train, it is necessary that the same size of
generating circle be used for all the faces and all the flanks in
the set, and if this be done the wheels will work correctly
together, no matter what the number of the teeth in each wheel
may be, nor in what way they are interchanged. Thus in Fig.
37, let A represent the pitch line of a rack, and B and C the pitch

circles of two wheels, then the generating circle would be rolled
within B, as at 1, for the flank curves, and without it, as at 2, for the
face curves of B. It would be rolled without the pitch line, as at
3, for the rack faces, and within it, as at 4, for the rack flanks,
and without C, as at 5, for the faces, and within it, as at 6, for
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Fig. 37.

flanks of the teeth on ¢, and all the teeth will work correctly
together however they be placed; thus c might receive motion
from the rack, and B receive motion from c. Or if any number
of different diameters of wheels are used they will all work
correctly together and interchange perfectly, with the single
condition that the same size of generating circle be used through-
out. But the curves of the teeth so formed will not be alike. Thus
in Fig. 38 are shown three teeth, all struck with the same size of
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generating circle, D being for a wheel of 12 teeth, E for a wheel
of 50 teeth, and F a tooth of a rack ; teethE,F, being made wider
so as to let the curves show clearly on each side, it being obvious
that since the curves are due to the relative sizes of the pitch and
generating circles they are equally applicable to any pitch or
thickness of teeth on wheels having the same diameters of pitch
circle.

In determining the diameter of a generating circle for a set or
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train of wheels, we have the consideration that the smaller the
diameter of the generating circle in proportion to that of the

Fig. 39.

pitch circle the more the teeth are spread at the roots, and this
‘creates a pressure tending to thrust the wheels apart, thus
causing the axle journals to wear. In Fig. 39, for example, A A

[ —

Fig. 40.

is the line of centres, and the contact of the curves at B C would
cause a thrust in the direction of the arrows b, E, This thrust

would exist throughout the whole path of contact save at the
point F, on the line of centres. This thrust is reduced in proportion
as the diameter of the gcnerating circle is increased ; thusin Fig.
40, 1s represented a pair of pinions of 12 teeth and 3 inch pitch,
and ¢ being the driver, there is contact at &, and at G, and E
being a radial line, there is obviously a minimum of thrust.

What is known as the Willis system for interchangeable gear-
ix.lg, consists of using for every pitch of the teeth a generating
circle whose diameter is equal to the radius of a pinion having
12 teeth, hence the pinion will in each pitch have radial
flanks, and the roots of the teeth will be more spread as the
number of teeth in the wheel is increased. Twelve teeth is the
least number that it is considered practicable to use; hence it is
obvious that under this system all wheels of the same pitch will
work correctly together. -

Unless the faces of the teeth and the flanks with which they
work are curves produced from the same size of generating circle,
the velocity of the teeth will not be uniform. Obviously the revolu-

=

tions of the wheels will be proportionate to their numbers of teeth ;
hence in a pair of wheels having an equal number of teeth, the
revolutions will per force be equal, but the driver will not impart
uniform motion to the driven wheel, but each tooth will during the
path f contact move irregularly.

The velocity of a pair of wheels will be uniform at each instant
of time, if a line normal to the surfaces of the curves at their
point of contact passes through the point of contact of the pitch
circles on the line of centres of the wheels. Thus in Fig. 41, the
line A A is tangent to the teeth curves where they touch, and D
at a right angle to A A, and meets it at the point of the tooth
curves, hence it is normal to the point of contact, and as it meets
the pitch circles on the line of centres the velecity of the wheels
will be uniform.

The amount of rolling motion of the teeth one upon the other
while passing through the path of contact, will be a minimum
when the tooth curves are correctly formed according to the rules
given. But furthermore the sliding motion will be increased in
proportion as the diameter of the generating circle is increased,
and the number of teeth in contact will be increased because the
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arc, or path, of contact is longer as the generating circle is made
larger.

Thus in Fig. 42 is a pair of wheels whose tooth curves are from
a generating circle equal to the radius of the wheels, hence the

of the teeth on the larger wheel B, have contact along a greater
portion of their depths than do the flanks of those on the smaller,
as is shown by the dotted arc I being farther from the pitch circle
than the dotted arc Jis, these two dotted arcs representing the

Fig. 42.

flanks are radial. The teeth are made of unusual depth to keep
the lines in the engraving clear. Suppose V to be the driver, w
the driven wheel or follower, and the direction of motion as at P,
contact upon tooth A will begin at C, and while A is passing to
the line of centres the path of contact will pass along the thick-
ened line to X. During this time the whole length of face from ¢
to R will have had contact with the length of flank from C to N,
and it follows that the length of face on A that rolled on € N can
only equal the length of ¢ N, and that the amount of sliding
motion must be represented by the length of R Non A, and the
amount of rolling motion by the length N €. Again, during the
arc of recess (marked by dots) the length of flank that will have
had contact is the depth from S to L, and over this depth the full
length of tooth face on wheel v will have swept, and as L s
equals C N, the amount of rolling and of sliding motion during
the arc of recess is equal to that during the arc of approach, and
the action is in both cases partly a rolling and partly a sliding one.
The two wheels are here shown of the same diameter, and there-
fore contain an equal number of teeth, hence the arcs of approach
and of recess are equal in length, which will not be the case when
one wheel contains more teeth than the other. Thus in Fig. 43,
let A represent a segment of a pinion, and B a segment of a spur-
wheel, both segments being blank with their pitch circles, the
tooth height and depth being marked by arcs of circles. Let C
and D represent the generating circles shown in the two respec-
tive positions on the line of centres. Let pinion A be the driver
moving in the direction of P, and the arc of approach will be from
E to X along the thickened arc, while the arc of recess will be as
denoted by the dotted arc from X to F. The distance E X being
greater than distance X F, therefore the arc of approach is longer
than that of recess.

But suppose B to be the driver and the reverse will be the case,
the arc of approach will begin at G and end at X, while the arc
of recess will begin at X and end at H, the latter being farther
from the line of centres than G is. It will be found also that, one
wheel being larger than the other, the amount of sliding and
rolling contact is different for the two wheels, and that the flanks
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paths of the lowest points of flank contact, points F and G, mark-
ing the initial lowest contact for the two directions of revolution:

Thus it appears that there is more sliding action upon the teeth
of the smaller than upon those of the larger wheel, and this is a
condition that will always exist.

Fig. 43.

In Fig. 44 is represented portion of a pair of wheels corre-
sponding to those shown in Fig. 42, except that in this case the
diameter of the generating circle is reduced to one quarter that of
the pitch diameter of the wheels. V is the driver in the direction
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of », and contact will begin at c; hence the depth of flank on
the teeth of Vv that will have contact is €N, which, the wheels,
being of equal diameter, will remain the same whichever wheel
be the driver, and in whatever direction motion occurs. The
amount of rolling motion is, therefore, C N, and that of sliding is
the difference between the distance CN and the length of the
tooth face.

If now we examine the distance CN in Fig. 42, we find that
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train of gearing in which the generating circle equals the radius
of the pinion, the pinion will wear out of shape the quickest, and
the largest wheel the least; because not only does each tooth on
the pinion more- frequently come into action on account of its
increased revolutions, but furthermore the length of flank that has
contact is less, while the amount of sliding action is greater. In
Fig. 45, for example, are a wheel and pinion, the latter having
radial flanks and the pinion being the driver, the arc of approach

A,

Fig. 44.

reducing the diameter of generating circle in Fig. 44 has increased
the depth of flank that has contact, and therefore increased the
rolling motion of the tooth face along the flank, and correspond-
ingly diminished the sliding action of the tooth contact. But at
the same time we have diminished the number of teeth in contact.
Thus in Fig. 42 there are three teeth in driving contact, while in
Fig. 44 there are but two, viz., D and E.

In an article by Professor Robinson, attention is called to the

Fig. 45.

fact that if the teeth of wheels are not formed to have correct
curves when new, they cannot be improved by wear; and this will
be clearly perceived from the preceding remarks upon the amount
of rolling and sliding contact. It will also readily appear that
the nearer the diameter of the generating to that of the base
circle the more the teeth wear out of correct shape ; hence, in a

is the thickened arc from C to the line of centres, while the arc of
recess is denoted by the dotted arc. As contact on the pinion
flank begins at point C and ends at the line of centres, the total
depth of flank that suffers wear from the contact is that from
C to N; and as the whole length of the wheel tooth face sweeps
over this depth C N, the pinion flanks must wear faster than the
wheel faces, and the pinion flanks will wear underneath, as denoted
by the dotted curve on the flanks of tooth W. In the case of the
wheel, contact on its tooth flanks begins at the line of centres and
ends at L, hence that flank can only wear between point L and
the pitch line S; and as the whole length of pinion face sweeps
on this short length L s, the pinion flank will wear most, the wear
being in the direction of the dotted arc on the left-hand side Vv of
the tooth. Now the pinion flank depth CN, being less than the
wheel flank depth s L, and the same length of tooth face sweeping
(during the path of contact) over both, obviously the pinion tooth
will wear the most, while both will, as the wear proceeds, lose
their proper flank curve. In Fig. 46 the generating arcs, G and
G, and the wheel are the same, but the pinion is larger. Asa
result the acting length C N, of pinion flank is increased, as is
also the acting length S I, of wheel flank; hence, the flanks of
both wheels would wear better, and also better preserve their
correct and original shapes.

It has been shown, when referring to Figs. 42 and 44, when
treating of the amount of sliding and of rolling motion, that the
smaller the diameter of rolling circle in proportion to that of pitch
circle, the longer the acting length of flank and the more the
amount of rolling motion ; and it follows that the teeth would also
preserve their original and true shape better. But the wear of
the teeth, and the alteration of tooth form by reason of that wear,
will, in any event, be greater upon the pinion than upon the
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wheel, and can only be equal when the two wheels are of equal
diameter, in which case the tooth curves will be alike on both
wheels, and the acting depths of flank will be equal, as shown in
Fig. 47, the flanks being radial, and the acting depths of flank
being shown at Jk. In Fig. 48 is shown a pair of wheels with a
generating circle, G and G, of one quarter the diameter of the
base circle or pitch diameter, and the acting length of flank is

Fig. 46.

shown at LM. The wear of the teeth would, therefore, in this
latter case, cause itin time to assume the form shown in Fig. 49.
But it is to be noted that while the acting depth of flank has been
increased the arcs of contact have been diminished, and that in
Fig. 47 there are two teeth in contact, while in Fig. 48 there is
but one, hence the pressure upon each tooth is less in proportion
as the diameter of the generating circle is increased. If a train
of wheels are to be constructed, or if the wheels are to be capable
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of interchanging with other combinations of wheels of the same
pitch, the diameter of the generating circle must be equal to the
smallest wheel or pinion, which is, under the Willis system, a
pinion of 12 teeth ; under the Pratt and Whitney, and Brown and
Sharpe systems, a pinion of 15 teeth.

But if a pair or a particular train of gears are to be constructed,
then a diameter of generating circle may be selected that is con-
sidered most suitable to the particular conditions ; as, for example,

it may be equal to the radius of the smallest wheel giving it
radial flanks, or less than that radius giving parallel or spread
flanks. But in any event, in order to transmit continuous motion,
the diameter of generating circle must be such as to give arcs of
action that are equal to the pitch, so that each pair of teeth will
come into action before the preceding pair have gone out of
action.

It may now be pointed out that the degrees of angle that the
teeth move through always exceeds the number of degrees of

Fig. 48.

angle contained in the paths of contact, or, in- other words,
exceeds the degrees contained in the arcs of approach and recess
combined.

In Fig. 50, for example, are a wheel A and pinion B, the teeth on
the wheel being extended to a point. Suppose that the wheel A
is the driver, and contact will begin between the two teeth D and
F on the dotted arc. Now suppose tooth D to have moved to
position ¢, and F will have been moved to position H. The

Fig. 49.

degrees of angle the pinion has been moved through are there-
fore denoted by T, whereas the degrees of angle the arcs of
contact contain are therefore denoted by J.

The degrees of angle that the wheel A has moved through are
obyiously denoted by E, because the point of tooth D has during
the arcs of contact moved from position D to position c. The
degrees of angle contained in its path of contact are denoted by K,
and are less than E, hence, in the case of teeth terminating in a
point as tooth D, the excess of angle of action over path of con-
tact is as many degrees as are contained in one-half the thickness
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of the tooth, while when the points of the teeth are cut off, the
excess is the number of degrees contained in the distance between
the corner and the side of the tooth as marked on a tooth at P.
With a given diameter of pitch circle and pitch diameter of
wheel, the length of the arc of contact will be influenced by the

height of the addendum from the pitch circle, because, as has

been shown, the arcs of approach and of recess, respectively,
begin and end on the addendum circle.

If the height of the addendum on the follower be reduced, the
arc of approach will be reduced, while the arc of recess will not
be altered; and if the follower have no addendum, contact

It is obvious, however, that the follower having no addendum
would, if acting as a driver to a third wheel, as in a train of
wheels, act on its follower, or the fourth wheel of the train, on the
arc of approach only ; hence it follows that the addendum might
be reduced to diminish, or dispensed with to eliminate action, on
the arc of approach in the follower of a pair of wheels only, and
not in the case of a train of wheels.

To make this clear to the reader it may be necessary to refer
again to Fig. 33 or 34, from which it will be seen that the action
of the teeth of the driver on the follower during the arc of
approach is produced by the flanks of the driver on the faces of
the follower. But if there are no such faces there can be no such
contact.

On the arc of recess, however, the faces of the driver act on the
flanks of the follower, hence the absence of faces on the follower
is of no import.

From these considerations it also appéars that by giving to
the driver an increase of addendum the arc of recess may be
increased without affecting the arc of approach. But the height
of addendum in machinists’ practice is made a constant propor-
tion of the pitch, so that the wheel may be used indiscriminately,
as circumstances may require, as either a driver or a follower,
the arcs of approach and of recess being equal. The height of
addendum, however, is an element in determining the number
of teeth in contact, and upon small pinions this is of import-
ance. ’

In Fig. 51, for example, is shown a section of two pinions of
equal diameters, and it will be observed that if the full line A
determined the height of the addendum there would be contact
either at C or B only (according to the direction in which the
motion took place). ’

With the addendum extended to the dotted circle, contact would
be just avoided, while with the addendum extended to D there
would be contact either at E or at F, according to which direction
the wheel had motion.

This, by dividing the strain over two teeth instead of placing
it all upon one tooth, not only doubles the strength for driving
capacity, but decreases the wear by giving more area of bearing
surface at each instant of time, although not increasing that
area in proportion to the number of teeth contained in the wheel.

>

Fig. 51,

between the teeth will occur on the arc of recess only, which
. gives a smoother motion, because the action of the driver is that
of dragging rather than that of pushing the follower. In this
case, however, the arc of recess must, to produce continuous
motion, be at least equal to the pitch.

In wheels of larger diameter, short teeth are more permissible,
because there are more teeth in contact, the number increasing
with the diameters of the wheels. It is to be observed, however,
that from having radial flanks, the smallest wheel is always the
weakest, and that from making the most revolutions in a given
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time, it suffers the most from wear, and hence requires the
greatest attainable number of teeth in constant contact at each
period of time, as well as the largest possible area of bearing or
wearing surface on the teeth.

It is true that increasing the ‘“ depth of tooth to pitch line”’
increases the whole length of tooth, and, therefore, weakens it ;
but this is far more than compensated for by distributing the
strain over a greater number of teeth. This is in practice
accomplished, when circumstances will permait, by making the

Fig. 52.

pitch finer, giving to a wheel, of a given diameter, a greater
number of teeth.

When the wheels are required to transmit motion rather than
power (as in the case of clock wheels), to move as frictionless as
possible, and to place a minimum of thrust on the journals of the
shafts of the wheels, the generating circle may be made nearly
as large as the diameter of the pitch circle, producing teeth of
the form shown in Fig. 52. But the minimum of friction is
attained when the two flanks for the tooth are drawn into one
common hypocycloid, as in Fig. 53. The difference between the
form of tooth shown in Fig. 52 and that shown in Fig. 53, is
merely due to an increase in the diameter of the generating
circle for the latter. It will be observed that in these forms the

Fig. 53.

acting length of flank diminishes in proportion as the diameter
of the generating circle is increased, the ultimate diameter of
generating circle being as large as the pitch circles.

* This form is undesirable in that there is contact on one side
only (on the arc of approach) of the line of centres, but the flanks
of the teeth may be so modified as to give contact on the arc of
recess also, by forming the flanks as shown in Fig. 54, the flanks,
or rather the parts within the pitch circles, being nearly half
circles, and the parts without with peculiarly formed faces, as
shown in the figure. The pitch circles must still be regarded as
the rolling circles rolling upon each other. Suppose 4 a tracing
point on B, then as B rolls on A it will describe the epicycloid @ 6.

# From an article by Professor Robinson.

A parallel line ¢ & will work at a constant distance as at ¢ &
from @ 4, and this distance may be the radius of that part of D
that is within the pitch line, the same process being applied to
the teeth on both wheels. Each tooth is thus composed of a
spur based upon a half cylinder. )
Comparing Figs. 53 and 54, we see that the bases in 53 are
flattest, and that the contact of faces upon them must range

Fig. 54.

nearer the pitch line than in 54. Hence, 53 presents a more
favorable obliquity of the line of direction of the pressures of
tooth upon tooth. In seeking a still more favorable direction by
going outside for the point of contact, we see by simply recalling
the method of generating the tooth curves, that tooth contacts
outside the pitch lines have no possible existence; and hence,
Fig. 53 may be regarded as representing that form of toothed
gear which will operate with less friction than any other known
form. '

This statement is intended to cover fixed teeth only, and not
that complicated form of the trundle wheel in which the cylinder

Fig. s55.

teeth are friction rollers. No doubt such would: run still easier,
even with their necessary one-sided contacts. Also, the state-
ment is supposed to be confined to such forms of teeth as have
good practical contacts at and near the line of centres.
Bevel-gear wheels are employed to transmit motion from one
shaft to another when the axis of one is at an angle to that of the
other. Thus in Fig. 551s shown a pair of bevel-wheels to transmit
motion from shafts at a right angle. In bevel-wheels all the lines
of the teeth, both at the tops or points of the teeth, at the bottoms
of the spaces, and on the sides of the teeth, radiate from the centre
E, where the axes of the two shafts would meet if produced.
Hence the depth, thickness, and height of the tooth decreases as
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the point E is approached from the diameter of the wheel, which is
always measured on the pitch circle at the largest end of the
cone, or in other words, at the largest pitch diameter.

The principles governing the practical construction of the
curves for the teeth of the bevel-wheels may be explained as
follows :—

In Fig. 56 let F and G represent two shafts, rotating about
their respective axes; and having cones whose greatest diameters
are at Aand B, and whose points are at E. The diameter A being
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Fig. 56.

equal to that of B their circumferences will be equal, and the
angular and velocity ratios will therefore be equal.

Let c and D represent two circles about the respective cones,
being equidistant from E, and therefore of equal diameters and
circumferences, and it is obvious that at every point in the length
of each cone the velocity will be equal to a point upon the other
so long as both points are equidistant from the points of inter-
section of the axes of the two shafts; hence if one cone drive
the other by frictional contact of surfaces, both shafts will be
rotated at an equal speed of rotation, or if one cone be fixed and
the other moved around it, the contact of the surfaces will be a
rolling contact throughout. The line of contact between the
two cones will be a straight line, radiating at all times from the
point E. If such, however, is not the case, then the contact will
no longer be a rolling one. Thus, in Fig. 57 the diameters or
circumferences at A and B being equal, the surfaces would roll
upon each other, but on account of the line of contact not radiat-
ing from E (which is the common centre of motion for the two

N
I
i
3
b
ER“'___—_[_'_-' G
\ |
\ |
\\q |
|
——— oo -g A
/ ]
- B
F
Fig. 57.

shafts) the circumference C is less than that of D, rendering a
rolling contact impossible.

We have supposed that the diameters of the cones be equal,
but the conditions will remain the same when their diameters are
unequal ; thus, in Fig. 58 the circumference of A is twice that
of B, hence the latter will make two rotations to one of the former,
and the contact will still be a rolling one. Similarly the circum-
ference of D is one half that of c, hence D will also make two
rotations to one of ¢, and the contact will also be a rolling one; a
condition which will always exist independent of the diameters of
the wheels so long as the angles of the faces, or wheels, or (what

is the same thing, the line of contact between the two,) radiates
from the point E, which is located where the axes of the shafts
would meet.

The principles governing the forms of the cones on which the
teeth are to be located thus being explained, we may now con-
sider the curves of the teeth. Suppose that in Fig. 59 the cone A
is fixed, and that the cone whose axis is F be rotated upon it in
the direction of the arrow. Then let a point be fixed in any part

A
c
E G
G
D
|
L i
F B
Fig. 58. Fig. 59.

of the circumference of B (say at &), and it is evident thaf the
path of this point will be as B rolls around the axis F, and at the
same time around A from the centre of motion, E. The curve so
generated or described by the point & will be a spherical epicy-
cloid. In this case the exterior of one cone has rolled upon the
coned surface of the other ; but suppose it rolls upon the interior,
as around the walls of a conical recess in a solid body; then a
point in its circumference would describe a curve known as the
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spherical hypocycloid ; both curves agreeing (except in their
spherical property) to the epicycloid and hypocycloid of the spur-
wheel. But this spherical property renders it very difficult indeed '
to practically delineate or mark the curves by rolling contact,
and on account of this difficulty Tredgold devised a method of
construction whereby the curves may be produced sufficiently
accurate for all practical purposes, as follows ; —

In Fig. 60 let A A represent the axis of one shaft, and B the
axis of the other, the axes of the two meeting at wW. Mark E,



THE TEETH OF GEAR-WHEELS. 23

representing the diameter of one wheel, and F that of the other
(both lines representing the pitch circles of the respective wheels).
Draw the line G G passing through the point W, and the point T,
where the pitch circles E, F meet, and G G will be the line of contact
between the cones. From W as a centre, draw on each side of G G
dotted lines as #, representing the height of the teeth above and
below the pitch line G G. At a right angle to G G mark the line
J K, and from the junction of this line with axis B (as at Q) asa
centre, mark the arc @, which will represent the pitch circle for
the large diameter of pinion D; mark also the arc & for the adden-

Fig. 61.

dum and ¢ for the roots of the teeth, so that from & to ¢ will repre-
sent the height of the tooth at that end.

Similarly from P, as a centre, mark (for the large diameter of
wheel c,) the pitch circle g, root circle %, and addendum 7. On
these arcs mark the curves in the same manner as for spur-wheels.
To obtain these arcs for the small diameters of the wheels, draw
M M parallel to JK. Setthe compasses to the radius R L, and from
P, as a centre, draw the pitch circle 2. To obtain the depth for
the tooth, draw the dotted line p, meeting the circle %, and the
point W. A similar line from circle 7 to W will show the height of
the addendum, or extreme diameter ; and mark the tooth curves
on £, /, m, in the same manner as for a spur-wheel.

Similarly for the pitch circle of the small end of the pinion
teeth, set the compasses to the radius S L, and from Q as a
centre, mark the pitch circle &, outside of & mark e for the height
of the addendum and inside of & mark # for the roots of the teeth
at that end. The distance between the dotted lines (as g) repre-
sents the full height of the teeth, hence Z meets line %, being the
root of tooth for large wheel, and to give clearance, the point of
the pinion teeth is marked below, thus arc 4 does not meet % or
#. Having obtained these arcs the curves are rolled as for a
spur-wheel.

A tooth thus marked out is shown at x, and from its curves
between & ¢, a template for the large diameter of the pinion tooth
may be made, while from the tooth curves between the arcs e f, a
template for the smallest tooth diameter of the pinion can be made.

Similarly for the wheel C the outer end curves are marked on
the lines g, %, 7, and those for the inner end on the lines 2, Z, 7.

Internal or annular gear-wheels have their tooth curves formed
by rolling the generating circle upon the pitch circle or base
circle, upon the same general principle as external or spur-wheels.
But the tooth of the annular wheel corresponds with the space
in the spur-wheel, as is shown in Fig. 61, in which curve A forms
the flank of a tooth on a spur-wheel P, and the face of a tooth
on the annular wheel w. It is obvious then that the generating
circle is rolled within the pitch circle for the face of the wheel
and without for its flank, or the reverse of the process for spur-
wheels. But in the case of internal or annular wheels the path
of contact of tooth upon tooth with a pinion having a given
number of teeth increases in proportion as the number of teeth

in the wheel is diminished, which is also the reverse of what
occurs in spur-wheels ; as will readily be perceived when it is
considered that if in an internal wheel the pinion have as many
teeth as the wheel the contact would exist around the whole pitch
circles of the wheel and pinion and the two would rotate together
without any motion of tooth upon tooth. Obviously then we have,
in the case of internal wheels, a consideration as to what is the
greatest number (as well as what is the least number) of teeth a
pinion may contain to work with a given wheel, whereas in spur- -
wheels the reverse is again the case, the consideration being how
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few teeth the wheel may contain to work with a given pinion.
Now it is found that although the curves of the teeth in internal
wheels and pinions may be rolled according to the principles
already laid down for spur-wheels, yet cases may arise in which
internal gears will not work under conditions in which spur-wheels
would work, because the internal wheels will not engage together.
Thus, in Fig. 62, is a pinion of 12 teeth and a wheel of 22 teeth,
a generating circle having a diameter equal to the radius of the
pinion having been used for all the tooth curves of both wheel
and pinion. It will be observed that teeth A, B, and C clearly

Fig. 62.

overlap teeth D, E, and F, and would therefore prevent the wheels
from engaging to the requisite depth. This may of course be
remedied by taking the faces off the pinion, as in Fig. 63, and
thus confining the arc of contact to an arc of recess if the pinion
drives, or an arc of approach if the wheel drives; or the number
of teeth in the pinion may be reduced, or that in the wheel
increased ; either of which may be carried out to a degree suffi-
cient to enable the teeth to engage and not interfere one with the
other. In Fig. 64 the number of teeth in the pinion P is reduced
from 12 to 6, the wheel W having 22 as before, and it will be
observed that the teeth engage and properly clear each other.

By the introduction into the figure of a segment of a spur-
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wheel also having 22 teeth and placed on the other side of the
pinion, it is shown that the path of contact is greater, and there-
fore the angle of actionis greater, in internal than in spur gearing.
Thus suppose the pinion to drive in the direction of the arrows
and the thickened arcs A B will be the arcs of approach, A
measuring longer than B. The dotted arcs C D represent the
arcs of receding contact and C is found longer than D, the angles
of action being 66° for the spur-wheels and 72° for the annular
wheel.

On referring again to Fig. 62 it will be observed that it is the
faces of the teeth on the two wheels that interfere and will prevent
them from engaging, hence it will readily occur to the mind that
it is possible to form the curves of the pinion faces correct to
work with the faces of the wheel teeth as well as with the flanks;
or it is possible to form the wheel faces with curves that will work
correctly with the faces, as well as with the flanks of the pinion
teeth, which will therefore increase the angle of action, and
professor McCord has shown in an article in the London Z7g7z-
neering how to accomplish this in a simple and yet exceedingly
ingenious manner which may be described as follows :—

It is required to find a describing circle that will roll the

Fig. 64.

curves for the flanks of the pinion and the faces of the wheels,
and also a describing circle for the flanks of the wheel and the
faces of the pinion; the curve for the wheel faces to work
correctly with the faces as well as with the flanks of the
pinion, and the curve for the pinion faces to work correctly with
both the flanks and faces of the internal wheel.

In Fig. 65 let P represent the pitch circle of an annular or
internal wheel whose centre is at A, and Q the pitch circle of a
pinion whose centre isat B, and let R be a describing circle whose
centreis at C, and which is to be used to roll all the curves for the
teeth. For the flanks of the annular wheel we may roll R within
P, while for the faces of the wheel we may roll R outside of P,
but in the case of the pinion we cannot roll R within Q, because
R is larger than Q, hence we must find some other rolling circle
of less diameter than R, and that can be used in its stead (the
radius of R always being greater than the radius of the axis of
the wheel and pinion for reasons that will appear presently).
Suppose then that in Fig. 66 we have a ring whose bore R
corresponds in diameter to the intermediate describing circle R,
Fig. 65 and that Q represents the pinion. Then we may roll R

MODERN MACHINE SHOP PRACTICE.

around and in contact with the pinion Q, and a tracing point in

‘R will trace the curve M N 0, giving a curve a portion of which

may be used for the faces of the pinion. But suppose that
instead of rolling the intermediate describing circle R around P,

q Anntlar 7%

Fig. 65.

we roll the circle T around P, and it will trace precisely the same
curve M N O-; hence for the faces of the pinion we have found a
rolling circle T which is a perfect substitute for the irtermediate
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Fig. 66.

circle Q, and which it will always be, no matter what the diameters
of the pinion and of the intermediate describing circle may be,
providing that the diameter of T is equal to the difference between
the diameters of the pinion and that of the intermediate describing
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circle as in the figure. If now we use this describing circle to
roll the flanks of the annular wheel as well as the faces of the
pinion, these faces and flanks will obviously work correctly
together. Since this describing circle is rolled on the outside of

Lalerior Deseribing
Circle

Fig. 67.

the pinion and on the outside of the annular wheel we may
distinguish it as the exterior describing circle.

Now instead of rolling the intermediate describing circle R
within the annular wheel P for the face curves of the teeth upon
P, we may find some other circle that will give the same curve
and be small enough to be rolled within the pinion Q for its teeth
flanks. Thus in Fig. 67 P represents the pitch circle of the
annular wheel and R the intermediate circle, and if R be rolled
within P, a point on the circumference of R will trace the curve
v w. - But if we take the circle S, having a diameter equal to
the difference between the diameter of R and that of P, and roll
it within P, a point in its circumference will trace the same curve
v W; hence s is a perfect substitute for R, and a portion of the
curve V W may be used for the faces of the teeth on the annular
wheel. The circle S being used for the pinion flanks, the wheel
faces and pinion flanks will work correctly together, and as the
circle s is rolled within the pinion for its flanks and within the

wheel forits faces, it may be distinguished as the interior describ-

ing circle.

To prove the correctness of the construction it may be noted
that with the particular diameter of intermediate describing
circle used in Fig. 65, the interior and exterior describing circles
are of equal diameters ; hence, as the same diameter of describing
circle is ‘used for all the faces and flanks of the pair of wheels
they will obviously work correctly together, in accordance with
the rules laid down for spur gearing. The radius of 8 in Fig. 69
is equal to the radius of the annular wheel, less the radius of the
intermediate circle, or the radius from A to C. The radius of the
exterior describing circle T is the radius of the intermediate circle
less the radius of the pinion, or radius C B in the figure.

Now the diameter of the intermediate circle may be determined
at will, but cannot exceed that of theé annular wheel or be less
than the pinion. But having been selected between these two
limits the interior and exterior describing circles derived from it
give teeth that not only engage properly and avoid the inter-
ference shown in Fig. 62, but that will also have an additional
arc of action during the recess, as is shown in Fig. 68, which
represents the wheel and pinion shown in Fig. 62, but produced
by means of the interior and exterior describing circles. Sup-
posing the pinion to be the driver the arc of approach will be
along the thickened arc of the interior describing circle, while
during the arc of recess there will be an arc of contact along the
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dotted portion of the exterior describing circle as in ordinary gear-
ing. Butin addition there will be an arc of recess along the dotted
portion of the intermediate circle R, which arc is due to the faces
of the pinion acting upon the faces as well as upon the flanks of
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the wheel teeth. It is obvious from this that as soon as a tooth
passes the line of centres it will, during a certain period, have
two points of contact, one on the arc of the exterior describing
circle, and another along the arc of R, this period continuing

Fig. 69.

until the addendum circle of the pinion crosses the dotted arc of
the exterior describing circle at z.

The diameters of the interior and exterior describing circles
obviously depend upon the diameter of the intermediate circle,
and as this may, as already stated, be selected, within certain
limits, at will, it is evident that the relative diameters of the
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interior and exterior describing circles will vary in proportion, the
interior becoming smaller and the exterior larger, while from the
very mode of construction the radius of the two will equal that of
the axes of the wheel and pinion. Thus in Fig. 69 the radii of
S,T,equal A B, or the line of centres, and their diameters, there-
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fore, equal the radius of the annular wheel, as is shown by dotting
them in at the upper half of the figure. But after their diameters
have been determined by this construction either of them may be
decreased in diameter and the teeth of the wheels will clear
(and not interfere as in Fig. 62), but the action will be the same

MODERN MACHINE SHOP PRACTICE.

having 22 and the pinion 12 teeth), the diameter of the inter-
mediate circle having been enlarged to decrease the diameter
of s and increase that of T, and as these are left of the diameter
derived from the construction there is receding action along R
from the line of centres to T.

In Fig. 71 are represented a wheel and pinion, the pinion
having but four teeth less than the wheel, and a tooth, J,
being shown in position in which it has contact at two places.
Thus at £ it is in contact with the flank of a tooth on the
annular wheel, while at L it is in contact with the face of
the same tooth.

As the faces of the teeth on the wheel do not have
contact higher than point # it is obvious that instead of
having them % of the pitch as at the bottom of the figure,
we may cut off the portion X without diminishing the arc
of contact, leaving them formed as at the top of the figure.
These faces being thus reduced in height we may correspond-
ingly reduce the depth of flank on the pinion by filling in the
portion G, leaving the teeth formed as at the top of the pinion.
The teeth faces of the wheel being thus reduced we may, by

using a sufficiently large intermediate circle, obtain interior and
exterior describing circles that will form teeth that will permit of
the pinion having but one tooth less than the wheel, or that will
form a wheel having but one tooth more than the pinion. ,
The limits to the diameter of the intermediate describing circle
are as follows: in Fig. 72 it is made equal in diameter to the
pitch diameter of the pinion, hence B will represent the centre of
the intermediate circle as well as of the pinion, and the pitch circle
of the pinion will also represent the intermediate circle R. To
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as in ordinary gear, or in other words there will be no arc of
action on the circle R. But S cannot be increased without
correspondingly decreasing T, nor can T be increased without
correspondingly decreasing S.

Fig. 70 shows the same pair of gears as in Fig. 68 (the wheel

obtain the radius for the interior describing circle we subtract
the radius of the intermediate circle from the radius of the
annular wheel, which gives A P, hence the pitch circle of the
pinion also represents the interior circle R. But when we come
to obtain the radius for the exterior describing circle (T), by sub-
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tracting the radius of the pinion from that of the intermediate
circle, we find that the two being equal give O for the radius of
(1), hence there could be no flanks on the pinion.

Now suppose that the intermediate circle be made equal in
diameter to the pitch circle of the annular wheel, and we may

Fig. 72.

obtain the radius for the exterior describing circle T ; by sub-
tracting the radius of the pinion from that of the intermediate
circle, we shall obtain the radius A B ; hence the radius of (T) will
equal that of the pinion. But when we come to obtain the radius
for the interior describing circle by subtracting the radius of the
intermediate circle from that of the annular wheel, we find these

two to be equal, hence there would be no interior describing circle,
and, therefore, no faces to the pinion.

The action of the teeth in internal wheels is less a sliding and
more a rolling one than that in any other form of toothed gearing.
This may be shown as follows : In Fig. 73 let A A represent the
pitch circle of an external pinion, and B B that of an internal one,
and P P the pitch circle of an external wheel for A A or an inter-
nal one for B B, the point of contact at the line of centres being
at ¢, and the direction of rotation P P being as denoted by the
arrow ; the two pinions being driven, we suppose a point at C, on
the pitch circle P P, to be coincident with a point on each of the
two pinions at the line of centres. If P P be rotated so as to
bring this point to the position denoted by D, the point on the
external pinion having moved to E, while that on the internal

Fig. 73.

pinion has moved to F, both having moved through an arc equal
to C D, then the distance from E to D being greater than from D
to ¥, more sliding motion must have accompanied the contact of
the teeth at the point E than at the point F; and the difference
in the length of the arc E D and that of F D, may be taken to re-
present the excess of sliding action for the teeth on E; for what-
ever, under any given condition, the amount of sliding contact
may be, it will be in the proportion of the length of E D to that of
¥ D. Presuming, then, that the amount of power transmitted be
equal for the two pinions, and the friction of all other things being
equal—being in proportion to the space passed (or in this case
slid) over—it is obvious that the internal pinion has the least
friction.



